| 1 | // tHash.cpp  |
| 2 | //  |
| 3 | // Hash functions for various kinds of data. Using 64 or 256 bit versions if you want to avoid collisions. There are two  |
| 4 | // 32 bit hash functions. A fast version used for most string hashes, and a slower but better version. All functions  |
| 5 | // return the supplied initialization vector(iv) if there was no data to hash. To compute a single hash from multiple  |
| 6 | // data sources like strings, binary data, or files, you do NOT need to consolidate all the source data into one buffer  |
| 7 | // first. Just set the initialization vector to the hash computed from the previous step.  |
| 8 | //  |
| 9 | // Copyright (c) 2004-2006, 2015, 2017, 2020 Tristan Grimmer.  |
| 10 | // Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby  |
| 11 | // granted, provided that the above copyright notice and this permission notice appear in all copies.  |
| 12 | //  |
| 13 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL  |
| 14 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,  |
| 15 | // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN  |
| 16 | // AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR  |
| 17 | // PERFORMANCE OF THIS SOFTWARE.  |
| 18 |   |
| 19 | #include <Foundation/tStandard.h>  |
| 20 | #include <Foundation/tHash.h>  |
| 21 |   |
| 22 |   |
| 23 | uint32 tHash::tHashDataFast32(const uint8* data, int length, uint32 iv)  |
| 24 | {  |
| 25 | uint32 hash = iv;  |
| 26 | while (length--)  |
| 27 | {  |
| 28 | hash += hash << 5;  |
| 29 | hash += *(uint8*)data++;  |
| 30 | }  |
| 31 |   |
| 32 | return hash;  |
| 33 | }  |
| 34 |   |
| 35 |   |
| 36 | // This 32bit hash was written originally by Robert J. Jenkins Jr., 1997  |
| 37 | // See http://burtleburtle.net/bob/hash/evahash.html  |
| 38 | namespace tHash  |
| 39 | {  |
| 40 | inline void Mix32(uint32& a, uint32& b, uint32& c)  |
| 41 | {  |
| 42 | a -= b; a -= c; a ^= (c>>13);  |
| 43 | b -= c; b -= a; b ^= (a<<8);  |
| 44 | c -= a; c -= b; c ^= (b>>13);  |
| 45 | a -= b; a -= c; a ^= (c>>12);  |
| 46 | b -= c; b -= a; b ^= (a<<16);  |
| 47 | c -= a; c -= b; c ^= (b>>5);  |
| 48 | a -= b; a -= c; a ^= (c>>3);  |
| 49 | b -= c; b -= a; b ^= (a<<10);  |
| 50 | c -= a; c -= b; c ^= (b>>15);  |
| 51 | }  |
| 52 | }  |
| 53 |   |
| 54 |   |
| 55 | uint32 tHash::tHashData32(const uint8* data, int length, uint32 iv)  |
| 56 | {  |
| 57 | uint32 a,b,c; // The internal state.  |
| 58 | int len; // How many key bytes still need mixing.  |
| 59 |   |
| 60 | len = length;  |
| 61 | a = b = 0x9e3779b9; // The golden ratio; an arbitrary value.  |
| 62 | c = iv; // Variable initialization of internal state.  |
| 63 |   |
| 64 | // Do as many 12 byte chunks as we can.  |
| 65 | while (len >= 12)  |
| 66 | {  |
| 67 | a += data[0] + (uint32(data[1]) << 8) + (uint32(data[2]) << 16) + (uint32(data[3]) << 24);  |
| 68 | b += data[4] + (uint32(data[5]) << 8) + (uint32(data[6]) << 16) + (uint32(data[7]) << 24);  |
| 69 | c += data[8] + (uint32(data[9]) << 8) + (uint32(data[10]) << 16) + (uint32(data[11]) << 24);  |
| 70 | tHash::Mix32(a,b,c);  |
| 71 | data += 12; len -= 12;  |
| 72 | }  |
| 73 |   |
| 74 | // Finish up the last 11 bytes.  |
| 75 | c += length;  |
| 76 | switch (len) // All the case statements fall through.  |
| 77 | {  |
| 78 | case 11: c += uint32(data[10]) << 24;  |
| 79 | case 10: c += uint32(data[9]) << 16;  |
| 80 | case 9 : c += uint32(data[8]) << 8; // The first byte of c is reserved for the length.  |
| 81 | case 8 : b += uint32(data[7]) << 24;  |
| 82 | case 7 : b += uint32(data[6]) << 16;  |
| 83 | case 6 : b += uint32(data[5]) << 8;  |
| 84 | case 5 : b += data[4];  |
| 85 | case 4 : a += uint32(data[3]) << 24;  |
| 86 | case 3 : a += uint32(data[2]) << 16;  |
| 87 | case 2 : a += uint32(data[1]) << 8;  |
| 88 | case 1 : a += data[0];  |
| 89 | }  |
| 90 | tHash::Mix32(a,b,c);  |
| 91 |   |
| 92 | return c;  |
| 93 | }  |
| 94 |   |
| 95 |   |
| 96 | // This 64bit hash was written originally by Robert J. Jenkins Jr., 1997  |
| 97 | // See http://burtleburtle.net/bob/hash/evahash.html  |
| 98 | namespace tHash  |
| 99 | {  |
| 100 | inline void Mix64(uint64& a, uint64& b, uint64& c)  |
| 101 | {  |
| 102 | a -= b; a -= c; a ^= (c>>43);  |
| 103 | b -= c; b -= a; b ^= (a<<9);  |
| 104 | c -= a; c -= b; c ^= (b>>8);  |
| 105 | a -= b; a -= c; a ^= (c>>38);  |
| 106 | b -= c; b -= a; b ^= (a<<23);  |
| 107 | c -= a; c -= b; c ^= (b>>5);  |
| 108 | a -= b; a -= c; a ^= (c>>35);  |
| 109 | b -= c; b -= a; b ^= (a<<49);  |
| 110 | c -= a; c -= b; c ^= (b>>11);  |
| 111 | a -= b; a -= c; a ^= (c>>12);  |
| 112 | b -= c; b -= a; b ^= (a<<18);  |
| 113 | c -= a; c -= b; c ^= (b>>22);  |
| 114 | }  |
| 115 | }  |
| 116 |   |
| 117 |   |
| 118 | uint64 tHash::tHashData64(const uint8* data, int length, uint64 iv)  |
| 119 | {  |
| 120 | uint64 a,b,c; // The internal state.  |
| 121 | int len; // How many key bytes still need mixing.  |
| 122 |   |
| 123 | len = length;  |
| 124 | a = b = 0x9e3779b97f4a7c13ULL; // The golden ratio; an arbitrary value.  |
| 125 | c = iv; // Variable initialization of internal state.  |
| 126 |   |
| 127 | // Do as many 24 byte chunks as we can.  |
| 128 | while (len >= 24)  |
| 129 | {  |
| 130 | a += (uint64(data[0]) << 0) + (uint64(data[1]) << 8) + (uint64(data[2]) << 16) + (uint64(data[3]) << 24)  |
| 131 | + (uint64(data[4]) << 32) + (uint64(data[5]) << 40) + (uint64(data[6]) << 48) + (uint64(data[7]) << 56);  |
| 132 |   |
| 133 | b += (uint64(data[8]) << 0) + (uint64(data[9]) << 8) + (uint64(data[10]) << 16) + (uint64(data[11]) << 24)  |
| 134 | + (uint64(data[12]) << 32) + (uint64(data[13]) << 40) + (uint64(data[14]) << 48) + (uint64(data[15]) << 56);  |
| 135 |   |
| 136 | c += (uint64(data[16]) << 0) + (uint64(data[17]) << 8) + (uint64(data[18]) << 16) + (uint64(data[19]) << 24)  |
| 137 | + (uint64(data[20]) << 32) + (uint64(data[21]) << 40) + (uint64(data[22]) << 48) + (uint64(data[23]) << 56);  |
| 138 |   |
| 139 | tHash::Mix64(a,b,c);  |
| 140 | data += 24; len -= 24;  |
| 141 | }  |
| 142 |   |
| 143 | // Finish up the last 23 bytes.  |
| 144 | c += length;  |
| 145 | switch (len) // All the case statements fall through.  |
| 146 | {  |
| 147 | case 23: c += uint64(data[22]) << 56;  |
| 148 | case 22: c += uint64(data[21]) << 48;  |
| 149 | case 21: c += uint64(data[20]) << 40;  |
| 150 | case 20: c += uint64(data[19]) << 32;  |
| 151 | case 19: c += uint64(data[18]) << 24;  |
| 152 | case 18: c += uint64(data[17]) << 16;  |
| 153 | case 17: c += uint64(data[16]) << 8; // The first byte of c is reserved for the length.  |
| 154 |   |
| 155 | case 16: b += uint64(data[15]) << 56;  |
| 156 | case 15: b += uint64(data[14]) << 48;  |
| 157 | case 14: b += uint64(data[13]) << 40;  |
| 158 | case 13: b += uint64(data[12]) << 32;  |
| 159 | case 12: b += uint64(data[11]) << 24;  |
| 160 | case 11: b += uint64(data[10]) << 16;  |
| 161 | case 10: b += uint64(data[9]) << 8;  |
| 162 | case 9 : b += uint64(data[8]) << 0;  |
| 163 |   |
| 164 | case 8: a += uint64(data[7]) << 56;  |
| 165 | case 7: a += uint64(data[6]) << 48;  |
| 166 | case 6: a += uint64(data[5]) << 40;  |
| 167 | case 5: a += uint64(data[4]) << 32;  |
| 168 | case 4: a += uint64(data[3]) << 24;  |
| 169 | case 3: a += uint64(data[2]) << 16;  |
| 170 | case 2: a += uint64(data[1]) << 8;  |
| 171 | case 1: a += uint64(data[0]) << 0;  |
| 172 | }  |
| 173 |   |
| 174 | tHash::Mix64(a,b,c);  |
| 175 |   |
| 176 | return c;  |
| 177 | }  |
| 178 |   |
| 179 |   |
| 180 | // Here is the 128 bit MD5 hash algorithm.  |
| 181 | namespace tHash  |
| 182 | {  |
| 183 | // Below are constants for MD5Transform routine.  |
| 184 | const static int MD5_S11 = 7;  |
| 185 | const static int MD5_S12 = 12;  |
| 186 | const static int MD5_S13 = 17;  |
| 187 | const static int MD5_S14 = 22;  |
| 188 | const static int MD5_S21 = 5;  |
| 189 | const static int MD5_S22 = 9;  |
| 190 | const static int MD5_S23 = 14;  |
| 191 | const static int MD5_S24 = 20;  |
| 192 | const static int MD5_S31 = 4;  |
| 193 | const static int MD5_S32 = 11;  |
| 194 | const static int MD5_S33 = 16;  |
| 195 | const static int MD5_S34 = 23;  |
| 196 | const static int MD5_S41 = 6;  |
| 197 | const static int MD5_S42 = 10;  |
| 198 | const static int MD5_S43 = 15;  |
| 199 | const static int MD5_S44 = 21;  |
| 200 |   |
| 201 | const static int iMD5BlockSize = 64;  |
| 202 |   |
| 203 | // Decodes input (uint8) into output (uint32). Assumes len is a multiple of 4.  |
| 204 | void MD5Decode(uint32* output, const uint8* input, int length);  |
| 205 |   |
| 206 | // Encodes input (uint32) into output (uint8). Assumes len is a multiple of 4.  |
| 207 | void MD5Encode(uint8* output, const uint32* input, int length);  |
| 208 |   |
| 209 | // Apply MD5 algo on a block.  |
| 210 | void MD5Transform(uint32 state[4], const uint8* block);  |
| 211 |   |
| 212 | void MD5Update(uint32 count[2], uint32 state[4], const uint8* data, uint32 length, uint8 buffer[iMD5BlockSize]);  |
| 213 |   |
| 214 | uint32 MD5_F(uint32 x, uint32 y, uint32 z) { return (x&y) | (~x&z); }  |
| 215 | uint32 MD5_G(uint32 x, uint32 y, uint32 z) { return (x&z) | (y&~z); }  |
| 216 | uint32 MD5_H(uint32 x, uint32 y, uint32 z) { return x^y^z; }  |
| 217 | uint32 MD5_I(uint32 x, uint32 y, uint32 z) { return y ^ (x | ~z); }  |
| 218 | uint32 MD5_RotateLeft(uint32 x, int n) { return (x << n) | (x >> (32-n)); }  |
| 219 | void MD5_FF(uint32& a, uint32 b, uint32 c, uint32 d, uint32 x, uint32 s, uint32 ac) { a = MD5_RotateLeft(a + MD5_F(b, c, d) + x + ac, s) + b; }  |
| 220 | void MD5_GG(uint32& a, uint32 b, uint32 c, uint32 d, uint32 x, uint32 s, uint32 ac) { a = MD5_RotateLeft(a + MD5_G(b, c, d) + x + ac, s) + b; }  |
| 221 | void MD5_HH(uint32& a, uint32 b, uint32 c, uint32 d, uint32 x, uint32 s, uint32 ac) { a = MD5_RotateLeft(a + MD5_H(b, c, d) + x + ac, s) + b; }  |
| 222 | void MD5_II(uint32& a, uint32 b, uint32 c, uint32 d, uint32 x, uint32 s, uint32 ac) { a = MD5_RotateLeft(a + MD5_I(b, c, d) + x + ac, s) + b; }  |
| 223 | };  |
| 224 |   |
| 225 |   |
| 226 | void tHash::MD5Decode(uint32* output, const uint8* input, int length)  |
| 227 | {  |
| 228 | for (int i = 0, j = 0; j < length; i++, j += 4)  |
| 229 | {  |
| 230 | uint32 j0 = uint32(input[j]);  |
| 231 | uint32 j1 = uint32(input[j+1]);  |
| 232 | uint32 j2 = uint32(input[j+2]);  |
| 233 | uint32 j3 = uint32(input[j+3]);  |
| 234 | output[i] = (j0 | (j1 << 8) | (j2 << 16) | (j3 << 24));  |
| 235 | }  |
| 236 | }  |
| 237 |   |
| 238 |   |
| 239 | void tHash::MD5Encode(uint8* output, const uint32* input, int length)  |
| 240 | {  |
| 241 | for (int i = 0, j = 0; j < length; i++, j += 4)  |
| 242 | {  |
| 243 | output[j] = input[i] & 0xFF;  |
| 244 | output[j+1] = (input[i] >> 8) & 0xFF;  |
| 245 | output[j+2] = (input[i] >> 16) & 0xFF;  |
| 246 | output[j+3] = (input[i] >> 24) & 0xFF;  |
| 247 | }  |
| 248 | }  |
| 249 |   |
| 250 |   |
| 251 | void tHash::MD5Transform(uint32 state[4], const uint8* block)  |
| 252 | {  |
| 253 | uint32 a = state[0];  |
| 254 | uint32 b = state[1];  |
| 255 | uint32 c = state[2];  |
| 256 | uint32 d = state[3];  |
| 257 | uint32 x[16];  |
| 258 |   |
| 259 | MD5Decode(x, block, iMD5BlockSize);  |
| 260 |   |
| 261 | // Round 1  |
| 262 | tHash::MD5_FF(a, b, c, d, x[ 0], tHash::MD5_S11, 0xd76aa478); // 1  |
| 263 | tHash::MD5_FF(d, a, b, c, x[ 1], tHash::MD5_S12, 0xe8c7b756); // 2  |
| 264 | tHash::MD5_FF(c, d, a, b, x[ 2], tHash::MD5_S13, 0x242070db); // 3  |
| 265 | tHash::MD5_FF(b, c, d, a, x[ 3], tHash::MD5_S14, 0xc1bdceee); // 4  |
| 266 | tHash::MD5_FF(a, b, c, d, x[ 4], tHash::MD5_S11, 0xf57c0faf); // 5  |
| 267 | tHash::MD5_FF(d, a, b, c, x[ 5], tHash::MD5_S12, 0x4787c62a); // 6  |
| 268 | tHash::MD5_FF(c, d, a, b, x[ 6], tHash::MD5_S13, 0xa8304613); // 7  |
| 269 | tHash::MD5_FF(b, c, d, a, x[ 7], tHash::MD5_S14, 0xfd469501); // 8  |
| 270 | tHash::MD5_FF(a, b, c, d, x[ 8], tHash::MD5_S11, 0x698098d8); // 9  |
| 271 | tHash::MD5_FF(d, a, b, c, x[ 9], tHash::MD5_S12, 0x8b44f7af); // 10  |
| 272 | tHash::MD5_FF(c, d, a, b, x[10], tHash::MD5_S13, 0xffff5bb1); // 11  |
| 273 | tHash::MD5_FF(b, c, d, a, x[11], tHash::MD5_S14, 0x895cd7be); // 12  |
| 274 | tHash::MD5_FF(a, b, c, d, x[12], tHash::MD5_S11, 0x6b901122); // 13  |
| 275 | tHash::MD5_FF(d, a, b, c, x[13], tHash::MD5_S12, 0xfd987193); // 14  |
| 276 | tHash::MD5_FF(c, d, a, b, x[14], tHash::MD5_S13, 0xa679438e); // 15  |
| 277 | tHash::MD5_FF(b, c, d, a, x[15], tHash::MD5_S14, 0x49b40821); // 16  |
| 278 |   |
| 279 | // Round 2  |
| 280 | tHash::MD5_GG(a, b, c, d, x[ 1], tHash::MD5_S21, 0xf61e2562); // 17  |
| 281 | tHash::MD5_GG(d, a, b, c, x[ 6], tHash::MD5_S22, 0xc040b340); // 18  |
| 282 | tHash::MD5_GG(c, d, a, b, x[11], tHash::MD5_S23, 0x265e5a51); // 19  |
| 283 | tHash::MD5_GG(b, c, d, a, x[ 0], tHash::MD5_S24, 0xe9b6c7aa); // 20  |
| 284 | tHash::MD5_GG(a, b, c, d, x[ 5], tHash::MD5_S21, 0xd62f105d); // 21  |
| 285 | tHash::MD5_GG(d, a, b, c, x[10], tHash::MD5_S22, 0x02441453); // 22  |
| 286 | tHash::MD5_GG(c, d, a, b, x[15], tHash::MD5_S23, 0xd8a1e681); // 23  |
| 287 | tHash::MD5_GG(b, c, d, a, x[ 4], tHash::MD5_S24, 0xe7d3fbc8); // 24  |
| 288 | tHash::MD5_GG(a, b, c, d, x[ 9], tHash::MD5_S21, 0x21e1cde6); // 25  |
| 289 | tHash::MD5_GG(d, a, b, c, x[14], tHash::MD5_S22, 0xc33707d6); // 26  |
| 290 | tHash::MD5_GG(c, d, a, b, x[ 3], tHash::MD5_S23, 0xf4d50d87); // 27  |
| 291 | tHash::MD5_GG(b, c, d, a, x[ 8], tHash::MD5_S24, 0x455a14ed); // 28  |
| 292 | tHash::MD5_GG(a, b, c, d, x[13], tHash::MD5_S21, 0xa9e3e905); // 29  |
| 293 | tHash::MD5_GG(d, a, b, c, x[ 2], tHash::MD5_S22, 0xfcefa3f8); // 30  |
| 294 | tHash::MD5_GG(c, d, a, b, x[ 7], tHash::MD5_S23, 0x676f02d9); // 31  |
| 295 | tHash::MD5_GG(b, c, d, a, x[12], tHash::MD5_S24, 0x8d2a4c8a); // 32  |
| 296 |   |
| 297 | // Round 3  |
| 298 | tHash::MD5_HH(a, b, c, d, x[ 5], tHash::MD5_S31, 0xfffa3942); // 33  |
| 299 | tHash::MD5_HH(d, a, b, c, x[ 8], tHash::MD5_S32, 0x8771f681); // 34  |
| 300 | tHash::MD5_HH(c, d, a, b, x[11], tHash::MD5_S33, 0x6d9d6122); // 35  |
| 301 | tHash::MD5_HH(b, c, d, a, x[14], tHash::MD5_S34, 0xfde5380c); // 36  |
| 302 | tHash::MD5_HH(a, b, c, d, x[ 1], tHash::MD5_S31, 0xa4beea44); // 37  |
| 303 | tHash::MD5_HH(d, a, b, c, x[ 4], tHash::MD5_S32, 0x4bdecfa9); // 38  |
| 304 | tHash::MD5_HH(c, d, a, b, x[ 7], tHash::MD5_S33, 0xf6bb4b60); // 39  |
| 305 | tHash::MD5_HH(b, c, d, a, x[10], tHash::MD5_S34, 0xbebfbc70); // 40  |
| 306 | tHash::MD5_HH(a, b, c, d, x[13], tHash::MD5_S31, 0x289b7ec6); // 41  |
| 307 | tHash::MD5_HH(d, a, b, c, x[ 0], tHash::MD5_S32, 0xeaa127fa); // 42  |
| 308 | tHash::MD5_HH(c, d, a, b, x[ 3], tHash::MD5_S33, 0xd4ef3085); // 43  |
| 309 | tHash::MD5_HH(b, c, d, a, x[ 6], tHash::MD5_S34, 0x04881d05); // 44  |
| 310 | tHash::MD5_HH(a, b, c, d, x[ 9], tHash::MD5_S31, 0xd9d4d039); // 45  |
| 311 | tHash::MD5_HH(d, a, b, c, x[12], tHash::MD5_S32, 0xe6db99e5); // 46  |
| 312 | tHash::MD5_HH(c, d, a, b, x[15], tHash::MD5_S33, 0x1fa27cf8); // 47  |
| 313 | tHash::MD5_HH(b, c, d, a, x[ 2], tHash::MD5_S34, 0xc4ac5665); // 48  |
| 314 |   |
| 315 | // Round 4  |
| 316 | tHash::MD5_II(a, b, c, d, x[ 0], tHash::MD5_S41, 0xf4292244); // 49  |
| 317 | tHash::MD5_II(d, a, b, c, x[ 7], tHash::MD5_S42, 0x432aff97); // 50  |
| 318 | tHash::MD5_II(c, d, a, b, x[14], tHash::MD5_S43, 0xab9423a7); // 51  |
| 319 | tHash::MD5_II(b, c, d, a, x[ 5], tHash::MD5_S44, 0xfc93a039); // 52  |
| 320 | tHash::MD5_II(a, b, c, d, x[12], tHash::MD5_S41, 0x655b59c3); // 53  |
| 321 | tHash::MD5_II(d, a, b, c, x[ 3], tHash::MD5_S42, 0x8f0ccc92); // 54  |
| 322 | tHash::MD5_II(c, d, a, b, x[10], tHash::MD5_S43, 0xffeff47d); // 55  |
| 323 | tHash::MD5_II(b, c, d, a, x[ 1], tHash::MD5_S44, 0x85845dd1); // 56  |
| 324 | tHash::MD5_II(a, b, c, d, x[ 8], tHash::MD5_S41, 0x6fa87e4f); // 57  |
| 325 | tHash::MD5_II(d, a, b, c, x[15], tHash::MD5_S42, 0xfe2ce6e0); // 58  |
| 326 | tHash::MD5_II(c, d, a, b, x[ 6], tHash::MD5_S43, 0xa3014314); // 59  |
| 327 | tHash::MD5_II(b, c, d, a, x[13], tHash::MD5_S44, 0x4e0811a1); // 60  |
| 328 | tHash::MD5_II(a, b, c, d, x[ 4], tHash::MD5_S41, 0xf7537e82); // 61  |
| 329 | tHash::MD5_II(d, a, b, c, x[11], tHash::MD5_S42, 0xbd3af235); // 62  |
| 330 | tHash::MD5_II(c, d, a, b, x[ 2], tHash::MD5_S43, 0x2ad7d2bb); // 63  |
| 331 | tHash::MD5_II(b, c, d, a, x[ 9], tHash::MD5_S44, 0xeb86d391); // 64  |
| 332 |   |
| 333 | state[0] += a;  |
| 334 | state[1] += b;  |
| 335 | state[2] += c;  |
| 336 | state[3] += d;  |
| 337 |   |
| 338 | // Clear sensitive information.  |
| 339 | tStd::tMemset(x, 0, sizeof(x));  |
| 340 | }  |
| 341 |   |
| 342 |   |
| 343 | void tHash::MD5Update(uint32 count[2], uint32 state[4], const uint8* data, uint32 length, uint8 buffer[iMD5BlockSize])  |
| 344 | {  |
| 345 | int index = count[0] / 8 % iMD5BlockSize; // Compute number of bytes mod 64.  |
| 346 |   |
| 347 | // Update number of bits.  |
| 348 | if ((count[0] += (length << 3)) < (length << 3))  |
| 349 | count[1]++;  |
| 350 | count[1] += (length >> 29);  |
| 351 |   |
| 352 | uint32 firstpart = 64 - index; // Number of bytes we need to fill in buffer.  |
| 353 |   |
| 354 | // Transform as many times as possible.  |
| 355 | uint32 i = 0;  |
| 356 | if (length >= firstpart)  |
| 357 | {  |
| 358 | // Fill buffer first, transform.  |
| 359 | tStd::tMemcpy(&buffer[index], data, firstpart);  |
| 360 | MD5Transform(state, buffer);  |
| 361 |   |
| 362 | // Transform chunks of blocksize (64 bytes).  |
| 363 | for (i = firstpart; i + iMD5BlockSize <= length; i += iMD5BlockSize)  |
| 364 | MD5Transform(state, &data[i]);  |
| 365 |   |
| 366 | index = 0;  |
| 367 | }  |
| 368 |   |
| 369 | // Buffer remaining input.  |
| 370 | tStd::tMemcpy(&buffer[index], &data[i], length-i);  |
| 371 | }  |
| 372 |   |
| 373 |   |
| 374 | tuint128 tHash::tHashDataMD5(const uint8* data, int len, tuint128 iv)  |
| 375 | {  |
| 376 | uint32 length = len;  |
| 377 | uint8 buffer[tHash::iMD5BlockSize]; // Bytes that didn't fit in last 64 byte chunk.  |
| 378 | uint32 count[2]; // 64bit counter for number of bits (lo, hi).  |
| 379 | uint32 state[4]; // Digest so far.  |
| 380 | uint8 digest[16]; // The result.  |
| 381 |   |
| 382 | // Phase 1. Initialize state variables.  |
| 383 | count[0] = 0;  |
| 384 | count[1] = 0;  |
| 385 | state[0] = 0x67452301; // Load magic initialization constants.  |
| 386 | state[1] = 0xefcdab89;  |
| 387 | state[2] = 0x98badcfe;  |
| 388 | state[3] = 0x10325476;  |
| 389 |   |
| 390 | // Phase 2. Block update. Could be put in a loop to process multiple chunks of data. Continues an MD5  |
| 391 | // message-digest operation, processing another message block.  |
| 392 | tHash::MD5Update(count, state, data, length, buffer);  |
| 393 |   |
| 394 | // Phase 3. Finalize.  |
| 395 | // Ends an MD5 message-digest operation, writing the the message digest and clearing the context.  |
| 396 | static uint8 padding[64] =  |
| 397 | {  |
| 398 | 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  |
| 399 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  |
| 400 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  |
| 401 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0  |
| 402 | };  |
| 403 |   |
| 404 | // Save number of bits.  |
| 405 | unsigned char bits[8];  |
| 406 | tHash::MD5Encode(bits, count, 8);  |
| 407 |   |
| 408 | // Pad out to 56 mod 64.  |
| 409 | int index = count[0] / 8 % 64;  |
| 410 | int padLen = (index < 56) ? (56 - index) : (120 - index);  |
| 411 | tHash::MD5Update(count, state, padding, padLen, buffer);  |
| 412 |   |
| 413 | // Append length (before padding).  |
| 414 | tHash::MD5Update(count, state, bits, 8, buffer);  |
| 415 |   |
| 416 | // Store state in digest  |
| 417 | tHash::MD5Encode(digest, state, 16);  |
| 418 |   |
| 419 | // Clear sensitive information.  |
| 420 | tStd::tMemset(buffer, 0, sizeof buffer);  |
| 421 | tStd::tMemset(count, 0, sizeof count);  |
| 422 |   |
| 423 | // Digest is now valid. The lower indexed numbers are least significant so we need to reverse the order.  |
| 424 | tuint128 result;  |
| 425 | tAssert(sizeof(result) == sizeof(digest));  |
| 426 |   |
| 427 | for (int i = 0; i < 16; i++)  |
| 428 | ((uint8*)&result)[15-i] = digest[i];  |
| 429 |   |
| 430 | return result;  |
| 431 | }  |
| 432 |   |
| 433 |   |
| 434 | // This 256bit hash was written originally by Robert J. Jenkins Jr., 1997  |
| 435 | // See http://burtleburtle.net/bob/hash/evahash.html  |
| 436 | namespace tHash  |
| 437 | {  |
| 438 | inline void Mix256(uint32& a, uint32& b, uint32& c, uint32& d, uint32& e, uint32& f, uint32& g, uint32& h)  |
| 439 | {  |
| 440 | a ^= b<<11; d += a; b += c;  |
| 441 | b ^= c>>2; e += b; c += d;  |
| 442 | c ^= d<<8; f += c; d += e;  |
| 443 | d ^= e>>16; g += d; e += f;  |
| 444 | e ^= f<<10; h += e; f += g;  |
| 445 | f ^= g>>4; a += f; g += h;  |
| 446 | g ^= h<<8; b += g; h += a;  |
| 447 | h ^= a>>9; c += h; a += b;  |
| 448 | }  |
| 449 | }  |
| 450 |   |
| 451 |   |
| 452 | tuint256 tHash::tHashData256(const uint8* data, int len, tuint256 iv)  |
| 453 | {  |
| 454 | uint32 a, b, c, d, e, f, g, h, length;  |
| 455 |   |
| 456 | // Use the length and level. Add in the golden ratio. Remember, 'a' is most significant.  |
| 457 | length = len;  |
| 458 | uint32& A = iv.RawElement(7); uint32& B = iv.RawElement(6); uint32& C = iv.RawElement(5); uint32& D = iv.RawElement(4);  |
| 459 | uint32& E = iv.RawElement(3); uint32& F = iv.RawElement(2); uint32& G = iv.RawElement(1); uint32& H = iv.RawElement(0);  |
| 460 | a = A; b = B; c = C; d = D;  |
| 461 | e = E; f = F; g = G; h = H;  |
| 462 |   |
| 463 | // Process most of the key.  |
| 464 | while (len >= 32)  |
| 465 | {  |
| 466 | a += *(uint32*)(data+0);  |
| 467 | b += *(uint32*)(data+4);  |
| 468 | c += *(uint32*)(data+8);  |
| 469 | d += *(uint32*)(data+12);  |
| 470 | e += *(uint32*)(data+16);  |
| 471 | f += *(uint32*)(data+20);  |
| 472 | g += *(uint32*)(data+24);  |
| 473 | h += *(uint32*)(data+28);  |
| 474 | tHash::Mix256(a,b,c,d,e,f,g,h);  |
| 475 | tHash::Mix256(a,b,c,d,e,f,g,h);  |
| 476 | tHash::Mix256(a,b,c,d,e,f,g,h);  |
| 477 | tHash::Mix256(a,b,c,d,e,f,g,h);  |
| 478 | data += 32; len -= 32;  |
| 479 | }  |
| 480 |   |
| 481 | // Process the last 31 bytes.  |
| 482 | h += length;  |
| 483 | switch (len)  |
| 484 | {  |
| 485 | case 31: h += (data[30] << 24);  |
| 486 | case 30: h += (data[29] << 16);  |
| 487 | case 29: h += (data[28] << 8);  |
| 488 | case 28: g += (data[27] << 24);  |
| 489 | case 27: g += (data[26] << 16);  |
| 490 | case 26: g += (data[25] << 8);  |
| 491 | case 25: g += data[24];  |
| 492 | case 24: f += (data[23] << 24);  |
| 493 | case 23: f += (data[22] << 16);  |
| 494 | case 22: f += (data[21] << 8);  |
| 495 | case 21: f += data[20];  |
| 496 | case 20: e += (data[19] << 24);  |
| 497 | case 19: e += (data[18] << 16);  |
| 498 | case 18: e += (data[17] << 8);  |
| 499 | case 17: e += data[16];  |
| 500 | case 16: d += (data[15] << 24);  |
| 501 | case 15: d += (data[14] << 16);  |
| 502 | case 14: d += (data[13] << 8);  |
| 503 | case 13: d += data[12];  |
| 504 | case 12: c += (data[11] << 24);  |
| 505 | case 11: c += (data[10] << 16);  |
| 506 | case 10: c += (data[9] << 8);  |
| 507 | case 9 : c += data[8];  |
| 508 | case 8 : b += (data[7] << 24);  |
| 509 | case 7 : b += (data[6] << 16);  |
| 510 | case 6 : b += (data[5] << 8);  |
| 511 | case 5 : b += data[4];  |
| 512 | case 4 : a += (data[3] << 24);  |
| 513 | case 3 : a += (data[2] << 16);  |
| 514 | case 2 : a += (data[1] << 8);  |
| 515 | case 1 : a += data[0];  |
| 516 | }  |
| 517 |   |
| 518 | tHash::Mix256(a,b,c,d,e,f,g,h);  |
| 519 | tHash::Mix256(a,b,c,d,e,f,g,h);  |
| 520 | tHash::Mix256(a,b,c,d,e,f,g,h);  |
| 521 | tHash::Mix256(a,b,c,d,e,f,g,h);  |
| 522 |   |
| 523 | A = a; B = b; C = c; D = d;  |
| 524 | E = e; F = f; G = g; H = h;  |
| 525 | return iv;  |
| 526 | }  |
| 527 | |