| 1 | /*  |
| 2 | * Copyright (C)2009-2015, 2017, 2020 D. R. Commander. All Rights Reserved.  |
| 3 | *  |
| 4 | * Redistribution and use in source and binary forms, with or without  |
| 5 | * modification, are permitted provided that the following conditions are met:  |
| 6 | *  |
| 7 | * - Redistributions of source code must retain the above copyright notice,  |
| 8 | * this list of conditions and the following disclaimer.  |
| 9 | * - Redistributions in binary form must reproduce the above copyright notice,  |
| 10 | * this list of conditions and the following disclaimer in the documentation  |
| 11 | * and/or other materials provided with the distribution.  |
| 12 | * - Neither the name of the libjpeg-turbo Project nor the names of its  |
| 13 | * contributors may be used to endorse or promote products derived from this  |
| 14 | * software without specific prior written permission.  |
| 15 | *  |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",  |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE  |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR  |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF  |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS  |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN  |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)  |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE  |
| 26 | * POSSIBILITY OF SUCH DAMAGE.  |
| 27 | */  |
| 28 |   |
| 29 | #ifndef __TURBOJPEG_H__  |
| 30 | #define __TURBOJPEG_H__  |
| 31 |   |
| 32 | #if defined(_WIN32) && defined(DLLDEFINE)  |
| 33 | #define DLLEXPORT __declspec(dllexport)  |
| 34 | #else  |
| 35 | #define DLLEXPORT  |
| 36 | #endif  |
| 37 | #define DLLCALL  |
| 38 |   |
| 39 |   |
| 40 | /**  |
| 41 | * @addtogroup TurboJPEG  |
| 42 | * TurboJPEG API. This API provides an interface for generating, decoding, and  |
| 43 | * transforming planar YUV and JPEG images in memory.  |
| 44 | *  |
| 45 | * @anchor YUVnotes  |
| 46 | * YUV Image Format Notes  |
| 47 | * ----------------------  |
| 48 | * Technically, the JPEG format uses the YCbCr colorspace (which is technically  |
| 49 | * not a colorspace but a color transform), but per the convention of the  |
| 50 | * digital video community, the TurboJPEG API uses "YUV" to refer to an image  |
| 51 | * format consisting of Y, Cb, and Cr image planes.  |
| 52 | *  |
| 53 | * Each plane is simply a 2D array of bytes, each byte representing the value  |
| 54 | * of one of the components (Y, Cb, or Cr) at a particular location in the  |
| 55 | * image. The width and height of each plane are determined by the image  |
| 56 | * width, height, and level of chrominance subsampling. The luminance plane  |
| 57 | * width is the image width padded to the nearest multiple of the horizontal  |
| 58 | * subsampling factor (2 in the case of 4:2:0 and 4:2:2, 4 in the case of  |
| 59 | * 4:1:1, 1 in the case of 4:4:4 or grayscale.) Similarly, the luminance plane  |
| 60 | * height is the image height padded to the nearest multiple of the vertical  |
| 61 | * subsampling factor (2 in the case of 4:2:0 or 4:4:0, 1 in the case of 4:4:4  |
| 62 | * or grayscale.) This is irrespective of any additional padding that may be  |
| 63 | * specified as an argument to the various YUV functions. The chrominance  |
| 64 | * plane width is equal to the luminance plane width divided by the horizontal  |
| 65 | * subsampling factor, and the chrominance plane height is equal to the  |
| 66 | * luminance plane height divided by the vertical subsampling factor.  |
| 67 | *  |
| 68 | * For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is  |
| 69 | * used, then the luminance plane would be 36 x 35 bytes, and each of the  |
| 70 | * chrominance planes would be 18 x 35 bytes. If you specify a line padding of  |
| 71 | * 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, and  |
| 72 | * each of the chrominance planes would be 20 x 35 bytes.  |
| 73 | *  |
| 74 | * @{  |
| 75 | */  |
| 76 |   |
| 77 |   |
| 78 | /**  |
| 79 | * The number of chrominance subsampling options  |
| 80 | */  |
| 81 | #define TJ_NUMSAMP 6  |
| 82 |   |
| 83 | /**  |
| 84 | * Chrominance subsampling options.  |
| 85 | * When pixels are converted from RGB to YCbCr (see #TJCS_YCbCr) or from CMYK  |
| 86 | * to YCCK (see #TJCS_YCCK) as part of the JPEG compression process, some of  |
| 87 | * the Cb and Cr (chrominance) components can be discarded or averaged together  |
| 88 | * to produce a smaller image with little perceptible loss of image clarity  |
| 89 | * (the human eye is more sensitive to small changes in brightness than to  |
| 90 | * small changes in color.) This is called "chrominance subsampling".  |
| 91 | */  |
| 92 | enum TJSAMP {  |
| 93 | /**  |
| 94 | * 4:4:4 chrominance subsampling (no chrominance subsampling). The JPEG or  |
| 95 | * YUV image will contain one chrominance component for every pixel in the  |
| 96 | * source image.  |
| 97 | */  |
| 98 | TJSAMP_444 = 0,  |
| 99 | /**  |
| 100 | * 4:2:2 chrominance subsampling. The JPEG or YUV image will contain one  |
| 101 | * chrominance component for every 2x1 block of pixels in the source image.  |
| 102 | */  |
| 103 | TJSAMP_422,  |
| 104 | /**  |
| 105 | * 4:2:0 chrominance subsampling. The JPEG or YUV image will contain one  |
| 106 | * chrominance component for every 2x2 block of pixels in the source image.  |
| 107 | */  |
| 108 | TJSAMP_420,  |
| 109 | /**  |
| 110 | * Grayscale. The JPEG or YUV image will contain no chrominance components.  |
| 111 | */  |
| 112 | TJSAMP_GRAY,  |
| 113 | /**  |
| 114 | * 4:4:0 chrominance subsampling. The JPEG or YUV image will contain one  |
| 115 | * chrominance component for every 1x2 block of pixels in the source image.  |
| 116 | *  |
| 117 | * @note 4:4:0 subsampling is not fully accelerated in libjpeg-turbo.  |
| 118 | */  |
| 119 | TJSAMP_440,  |
| 120 | /**  |
| 121 | * 4:1:1 chrominance subsampling. The JPEG or YUV image will contain one  |
| 122 | * chrominance component for every 4x1 block of pixels in the source image.  |
| 123 | * JPEG images compressed with 4:1:1 subsampling will be almost exactly the  |
| 124 | * same size as those compressed with 4:2:0 subsampling, and in the  |
| 125 | * aggregate, both subsampling methods produce approximately the same  |
| 126 | * perceptual quality. However, 4:1:1 is better able to reproduce sharp  |
| 127 | * horizontal features.  |
| 128 | *  |
| 129 | * @note 4:1:1 subsampling is not fully accelerated in libjpeg-turbo.  |
| 130 | */  |
| 131 | TJSAMP_411  |
| 132 | };  |
| 133 |   |
| 134 | /**  |
| 135 | * MCU block width (in pixels) for a given level of chrominance subsampling.  |
| 136 | * MCU block sizes:  |
| 137 | * - 8x8 for no subsampling or grayscale  |
| 138 | * - 16x8 for 4:2:2  |
| 139 | * - 8x16 for 4:4:0  |
| 140 | * - 16x16 for 4:2:0  |
| 141 | * - 32x8 for 4:1:1  |
| 142 | */  |
| 143 | static const int tjMCUWidth[TJ_NUMSAMP] = { 8, 16, 16, 8, 8, 32 };  |
| 144 |   |
| 145 | /**  |
| 146 | * MCU block height (in pixels) for a given level of chrominance subsampling.  |
| 147 | * MCU block sizes:  |
| 148 | * - 8x8 for no subsampling or grayscale  |
| 149 | * - 16x8 for 4:2:2  |
| 150 | * - 8x16 for 4:4:0  |
| 151 | * - 16x16 for 4:2:0  |
| 152 | * - 32x8 for 4:1:1  |
| 153 | */  |
| 154 | static const int tjMCUHeight[TJ_NUMSAMP] = { 8, 8, 16, 8, 16, 8 };  |
| 155 |   |
| 156 |   |
| 157 | /**  |
| 158 | * The number of pixel formats  |
| 159 | */  |
| 160 | #define TJ_NUMPF 12  |
| 161 |   |
| 162 | /**  |
| 163 | * Pixel formats  |
| 164 | */  |
| 165 | enum TJPF {  |
| 166 | /**  |
| 167 | * RGB pixel format. The red, green, and blue components in the image are  |
| 168 | * stored in 3-byte pixels in the order R, G, B from lowest to highest byte  |
| 169 | * address within each pixel.  |
| 170 | */  |
| 171 | TJPF_RGB = 0,  |
| 172 | /**  |
| 173 | * BGR pixel format. The red, green, and blue components in the image are  |
| 174 | * stored in 3-byte pixels in the order B, G, R from lowest to highest byte  |
| 175 | * address within each pixel.  |
| 176 | */  |
| 177 | TJPF_BGR,  |
| 178 | /**  |
| 179 | * RGBX pixel format. The red, green, and blue components in the image are  |
| 180 | * stored in 4-byte pixels in the order R, G, B from lowest to highest byte  |
| 181 | * address within each pixel. The X component is ignored when compressing  |
| 182 | * and undefined when decompressing.  |
| 183 | */  |
| 184 | TJPF_RGBX,  |
| 185 | /**  |
| 186 | * BGRX pixel format. The red, green, and blue components in the image are  |
| 187 | * stored in 4-byte pixels in the order B, G, R from lowest to highest byte  |
| 188 | * address within each pixel. The X component is ignored when compressing  |
| 189 | * and undefined when decompressing.  |
| 190 | */  |
| 191 | TJPF_BGRX,  |
| 192 | /**  |
| 193 | * XBGR pixel format. The red, green, and blue components in the image are  |
| 194 | * stored in 4-byte pixels in the order R, G, B from highest to lowest byte  |
| 195 | * address within each pixel. The X component is ignored when compressing  |
| 196 | * and undefined when decompressing.  |
| 197 | */  |
| 198 | TJPF_XBGR,  |
| 199 | /**  |
| 200 | * XRGB pixel format. The red, green, and blue components in the image are  |
| 201 | * stored in 4-byte pixels in the order B, G, R from highest to lowest byte  |
| 202 | * address within each pixel. The X component is ignored when compressing  |
| 203 | * and undefined when decompressing.  |
| 204 | */  |
| 205 | TJPF_XRGB,  |
| 206 | /**  |
| 207 | * Grayscale pixel format. Each 1-byte pixel represents a luminance  |
| 208 | * (brightness) level from 0 to 255.  |
| 209 | */  |
| 210 | TJPF_GRAY,  |
| 211 | /**  |
| 212 | * RGBA pixel format. This is the same as @ref TJPF_RGBX, except that when  |
| 213 | * decompressing, the X component is guaranteed to be 0xFF, which can be  |
| 214 | * interpreted as an opaque alpha channel.  |
| 215 | */  |
| 216 | TJPF_RGBA,  |
| 217 | /**  |
| 218 | * BGRA pixel format. This is the same as @ref TJPF_BGRX, except that when  |
| 219 | * decompressing, the X component is guaranteed to be 0xFF, which can be  |
| 220 | * interpreted as an opaque alpha channel.  |
| 221 | */  |
| 222 | TJPF_BGRA,  |
| 223 | /**  |
| 224 | * ABGR pixel format. This is the same as @ref TJPF_XBGR, except that when  |
| 225 | * decompressing, the X component is guaranteed to be 0xFF, which can be  |
| 226 | * interpreted as an opaque alpha channel.  |
| 227 | */  |
| 228 | TJPF_ABGR,  |
| 229 | /**  |
| 230 | * ARGB pixel format. This is the same as @ref TJPF_XRGB, except that when  |
| 231 | * decompressing, the X component is guaranteed to be 0xFF, which can be  |
| 232 | * interpreted as an opaque alpha channel.  |
| 233 | */  |
| 234 | TJPF_ARGB,  |
| 235 | /**  |
| 236 | * CMYK pixel format. Unlike RGB, which is an additive color model used  |
| 237 | * primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive  |
| 238 | * color model used primarily for printing. In the CMYK color model, the  |
| 239 | * value of each color component typically corresponds to an amount of cyan,  |
| 240 | * magenta, yellow, or black ink that is applied to a white background. In  |
| 241 | * order to convert between CMYK and RGB, it is necessary to use a color  |
| 242 | * management system (CMS.) A CMS will attempt to map colors within the  |
| 243 | * printer's gamut to perceptually similar colors in the display's gamut and  |
| 244 | * vice versa, but the mapping is typically not 1:1 or reversible, nor can it  |
| 245 | * be defined with a simple formula. Thus, such a conversion is out of scope  |
| 246 | * for a codec library. However, the TurboJPEG API allows for compressing  |
| 247 | * CMYK pixels into a YCCK JPEG image (see #TJCS_YCCK) and decompressing YCCK  |
| 248 | * JPEG images into CMYK pixels.  |
| 249 | */  |
| 250 | TJPF_CMYK,  |
| 251 | /**  |
| 252 | * Unknown pixel format. Currently this is only used by #tjLoadImage().  |
| 253 | */  |
| 254 | TJPF_UNKNOWN = -1  |
| 255 | };  |
| 256 |   |
| 257 | /**  |
| 258 | * Red offset (in bytes) for a given pixel format. This specifies the number  |
| 259 | * of bytes that the red component is offset from the start of the pixel. For  |
| 260 | * instance, if a pixel of format TJ_BGRX is stored in <tt>char pixel[]</tt>,  |
| 261 | * then the red component will be <tt>pixel[tjRedOffset[TJ_BGRX]]</tt>. This  |
| 262 | * will be -1 if the pixel format does not have a red component.  |
| 263 | */  |
| 264 | static const int tjRedOffset[TJ_NUMPF] = {  |
| 265 | 0, 2, 0, 2, 3, 1, -1, 0, 2, 3, 1, -1  |
| 266 | };  |
| 267 | /**  |
| 268 | * Green offset (in bytes) for a given pixel format. This specifies the number  |
| 269 | * of bytes that the green component is offset from the start of the pixel.  |
| 270 | * For instance, if a pixel of format TJ_BGRX is stored in  |
| 271 | * <tt>char pixel[]</tt>, then the green component will be  |
| 272 | * <tt>pixel[tjGreenOffset[TJ_BGRX]]</tt>. This will be -1 if the pixel format  |
| 273 | * does not have a green component.  |
| 274 | */  |
| 275 | static const int tjGreenOffset[TJ_NUMPF] = {  |
| 276 | 1, 1, 1, 1, 2, 2, -1, 1, 1, 2, 2, -1  |
| 277 | };  |
| 278 | /**  |
| 279 | * Blue offset (in bytes) for a given pixel format. This specifies the number  |
| 280 | * of bytes that the Blue component is offset from the start of the pixel. For  |
| 281 | * instance, if a pixel of format TJ_BGRX is stored in <tt>char pixel[]</tt>,  |
| 282 | * then the blue component will be <tt>pixel[tjBlueOffset[TJ_BGRX]]</tt>. This  |
| 283 | * will be -1 if the pixel format does not have a blue component.  |
| 284 | */  |
| 285 | static const int tjBlueOffset[TJ_NUMPF] = {  |
| 286 | 2, 0, 2, 0, 1, 3, -1, 2, 0, 1, 3, -1  |
| 287 | };  |
| 288 | /**  |
| 289 | * Alpha offset (in bytes) for a given pixel format. This specifies the number  |
| 290 | * of bytes that the Alpha component is offset from the start of the pixel.  |
| 291 | * For instance, if a pixel of format TJ_BGRA is stored in  |
| 292 | * <tt>char pixel[]</tt>, then the alpha component will be  |
| 293 | * <tt>pixel[tjAlphaOffset[TJ_BGRA]]</tt>. This will be -1 if the pixel format  |
| 294 | * does not have an alpha component.  |
| 295 | */  |
| 296 | static const int tjAlphaOffset[TJ_NUMPF] = {  |
| 297 | -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, -1  |
| 298 | };  |
| 299 | /**  |
| 300 | * Pixel size (in bytes) for a given pixel format  |
| 301 | */  |
| 302 | static const int tjPixelSize[TJ_NUMPF] = {  |
| 303 | 3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4  |
| 304 | };  |
| 305 |   |
| 306 |   |
| 307 | /**  |
| 308 | * The number of JPEG colorspaces  |
| 309 | */  |
| 310 | #define TJ_NUMCS 5  |
| 311 |   |
| 312 | /**  |
| 313 | * JPEG colorspaces  |
| 314 | */  |
| 315 | enum TJCS {  |
| 316 | /**  |
| 317 | * RGB colorspace. When compressing the JPEG image, the R, G, and B  |
| 318 | * components in the source image are reordered into image planes, but no  |
| 319 | * colorspace conversion or subsampling is performed. RGB JPEG images can be  |
| 320 | * decompressed to any of the extended RGB pixel formats or grayscale, but  |
| 321 | * they cannot be decompressed to YUV images.  |
| 322 | */  |
| 323 | TJCS_RGB = 0,  |
| 324 | /**  |
| 325 | * YCbCr colorspace. YCbCr is not an absolute colorspace but rather a  |
| 326 | * mathematical transformation of RGB designed solely for storage and  |
| 327 | * transmission. YCbCr images must be converted to RGB before they can  |
| 328 | * actually be displayed. In the YCbCr colorspace, the Y (luminance)  |
| 329 | * component represents the black & white portion of the original image, and  |
| 330 | * the Cb and Cr (chrominance) components represent the color portion of the  |
| 331 | * original image. Originally, the analog equivalent of this transformation  |
| 332 | * allowed the same signal to drive both black & white and color televisions,  |
| 333 | * but JPEG images use YCbCr primarily because it allows the color data to be  |
| 334 | * optionally subsampled for the purposes of reducing bandwidth or disk  |
| 335 | * space. YCbCr is the most common JPEG colorspace, and YCbCr JPEG images  |
| 336 | * can be compressed from and decompressed to any of the extended RGB pixel  |
| 337 | * formats or grayscale, or they can be decompressed to YUV planar images.  |
| 338 | */  |
| 339 | TJCS_YCbCr,  |
| 340 | /**  |
| 341 | * Grayscale colorspace. The JPEG image retains only the luminance data (Y  |
| 342 | * component), and any color data from the source image is discarded.  |
| 343 | * Grayscale JPEG images can be compressed from and decompressed to any of  |
| 344 | * the extended RGB pixel formats or grayscale, or they can be decompressed  |
| 345 | * to YUV planar images.  |
| 346 | */  |
| 347 | TJCS_GRAY,  |
| 348 | /**  |
| 349 | * CMYK colorspace. When compressing the JPEG image, the C, M, Y, and K  |
| 350 | * components in the source image are reordered into image planes, but no  |
| 351 | * colorspace conversion or subsampling is performed. CMYK JPEG images can  |
| 352 | * only be decompressed to CMYK pixels.  |
| 353 | */  |
| 354 | TJCS_CMYK,  |
| 355 | /**  |
| 356 | * YCCK colorspace. YCCK (AKA "YCbCrK") is not an absolute colorspace but  |
| 357 | * rather a mathematical transformation of CMYK designed solely for storage  |
| 358 | * and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be  |
| 359 | * reversibly transformed into YCCK, and as with YCbCr, the chrominance  |
| 360 | * components in the YCCK pixels can be subsampled without incurring major  |
| 361 | * perceptual loss. YCCK JPEG images can only be compressed from and  |
| 362 | * decompressed to CMYK pixels.  |
| 363 | */  |
| 364 | TJCS_YCCK  |
| 365 | };  |
| 366 |   |
| 367 |   |
| 368 | /**  |
| 369 | * The uncompressed source/destination image is stored in bottom-up (Windows,  |
| 370 | * OpenGL) order, not top-down (X11) order.  |
| 371 | */  |
| 372 | #define TJFLAG_BOTTOMUP 2  |
| 373 | /**  |
| 374 | * When decompressing an image that was compressed using chrominance  |
| 375 | * subsampling, use the fastest chrominance upsampling algorithm available in  |
| 376 | * the underlying codec. The default is to use smooth upsampling, which  |
| 377 | * creates a smooth transition between neighboring chrominance components in  |
| 378 | * order to reduce upsampling artifacts in the decompressed image.  |
| 379 | */  |
| 380 | #define TJFLAG_FASTUPSAMPLE 256  |
| 381 | /**  |
| 382 | * Disable buffer (re)allocation. If passed to one of the JPEG compression or  |
| 383 | * transform functions, this flag will cause those functions to generate an  |
| 384 | * error if the JPEG image buffer is invalid or too small rather than  |
| 385 | * attempting to allocate or reallocate that buffer. This reproduces the  |
| 386 | * behavior of earlier versions of TurboJPEG.  |
| 387 | */  |
| 388 | #define TJFLAG_NOREALLOC 1024  |
| 389 | /**  |
| 390 | * Use the fastest DCT/IDCT algorithm available in the underlying codec. The  |
| 391 | * default if this flag is not specified is implementation-specific. For  |
| 392 | * example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast  |
| 393 | * algorithm by default when compressing, because this has been shown to have  |
| 394 | * only a very slight effect on accuracy, but it uses the accurate algorithm  |
| 395 | * when decompressing, because this has been shown to have a larger effect.  |
| 396 | */  |
| 397 | #define TJFLAG_FASTDCT 2048  |
| 398 | /**  |
| 399 | * Use the most accurate DCT/IDCT algorithm available in the underlying codec.  |
| 400 | * The default if this flag is not specified is implementation-specific. For  |
| 401 | * example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast  |
| 402 | * algorithm by default when compressing, because this has been shown to have  |
| 403 | * only a very slight effect on accuracy, but it uses the accurate algorithm  |
| 404 | * when decompressing, because this has been shown to have a larger effect.  |
| 405 | */  |
| 406 | #define TJFLAG_ACCURATEDCT 4096  |
| 407 | /**  |
| 408 | * Immediately discontinue the current compression/decompression/transform  |
| 409 | * operation if the underlying codec throws a warning (non-fatal error). The  |
| 410 | * default behavior is to allow the operation to complete unless a fatal error  |
| 411 | * is encountered.  |
| 412 | */  |
| 413 | #define TJFLAG_STOPONWARNING 8192  |
| 414 | /**  |
| 415 | * Use progressive entropy coding in JPEG images generated by the compression  |
| 416 | * and transform functions. Progressive entropy coding will generally improve  |
| 417 | * compression relative to baseline entropy coding (the default), but it will  |
| 418 | * reduce compression and decompression performance considerably.  |
| 419 | */  |
| 420 | #define TJFLAG_PROGRESSIVE 16384  |
| 421 |   |
| 422 |   |
| 423 | /**  |
| 424 | * The number of error codes  |
| 425 | */  |
| 426 | #define TJ_NUMERR 2  |
| 427 |   |
| 428 | /**  |
| 429 | * Error codes  |
| 430 | */  |
| 431 | enum TJERR {  |
| 432 | /**  |
| 433 | * The error was non-fatal and recoverable, but the image may still be  |
| 434 | * corrupt.  |
| 435 | */  |
| 436 | TJERR_WARNING = 0,  |
| 437 | /**  |
| 438 | * The error was fatal and non-recoverable.  |
| 439 | */  |
| 440 | TJERR_FATAL  |
| 441 | };  |
| 442 |   |
| 443 |   |
| 444 | /**  |
| 445 | * The number of transform operations  |
| 446 | */  |
| 447 | #define TJ_NUMXOP 8  |
| 448 |   |
| 449 | /**  |
| 450 | * Transform operations for #tjTransform()  |
| 451 | */  |
| 452 | enum TJXOP {  |
| 453 | /**  |
| 454 | * Do not transform the position of the image pixels  |
| 455 | */  |
| 456 | TJXOP_NONE = 0,  |
| 457 | /**  |
| 458 | * Flip (mirror) image horizontally. This transform is imperfect if there  |
| 459 | * are any partial MCU blocks on the right edge (see #TJXOPT_PERFECT.)  |
| 460 | */  |
| 461 | TJXOP_HFLIP,  |
| 462 | /**  |
| 463 | * Flip (mirror) image vertically. This transform is imperfect if there are  |
| 464 | * any partial MCU blocks on the bottom edge (see #TJXOPT_PERFECT.)  |
| 465 | */  |
| 466 | TJXOP_VFLIP,  |
| 467 | /**  |
| 468 | * Transpose image (flip/mirror along upper left to lower right axis.) This  |
| 469 | * transform is always perfect.  |
| 470 | */  |
| 471 | TJXOP_TRANSPOSE,  |
| 472 | /**  |
| 473 | * Transverse transpose image (flip/mirror along upper right to lower left  |
| 474 | * axis.) This transform is imperfect if there are any partial MCU blocks in  |
| 475 | * the image (see #TJXOPT_PERFECT.)  |
| 476 | */  |
| 477 | TJXOP_TRANSVERSE,  |
| 478 | /**  |
| 479 | * Rotate image clockwise by 90 degrees. This transform is imperfect if  |
| 480 | * there are any partial MCU blocks on the bottom edge (see  |
| 481 | * #TJXOPT_PERFECT.)  |
| 482 | */  |
| 483 | TJXOP_ROT90,  |
| 484 | /**  |
| 485 | * Rotate image 180 degrees. This transform is imperfect if there are any  |
| 486 | * partial MCU blocks in the image (see #TJXOPT_PERFECT.)  |
| 487 | */  |
| 488 | TJXOP_ROT180,  |
| 489 | /**  |
| 490 | * Rotate image counter-clockwise by 90 degrees. This transform is imperfect  |
| 491 | * if there are any partial MCU blocks on the right edge (see  |
| 492 | * #TJXOPT_PERFECT.)  |
| 493 | */  |
| 494 | TJXOP_ROT270  |
| 495 | };  |
| 496 |   |
| 497 |   |
| 498 | /**  |
| 499 | * This option will cause #tjTransform() to return an error if the transform is  |
| 500 | * not perfect. Lossless transforms operate on MCU blocks, whose size depends  |
| 501 | * on the level of chrominance subsampling used (see #tjMCUWidth  |
| 502 | * and #tjMCUHeight.) If the image's width or height is not evenly divisible  |
| 503 | * by the MCU block size, then there will be partial MCU blocks on the right  |
| 504 | * and/or bottom edges. It is not possible to move these partial MCU blocks to  |
| 505 | * the top or left of the image, so any transform that would require that is  |
| 506 | * "imperfect." If this option is not specified, then any partial MCU blocks  |
| 507 | * that cannot be transformed will be left in place, which will create  |
| 508 | * odd-looking strips on the right or bottom edge of the image.  |
| 509 | */  |
| 510 | #define TJXOPT_PERFECT 1  |
| 511 | /**  |
| 512 | * This option will cause #tjTransform() to discard any partial MCU blocks that  |
| 513 | * cannot be transformed.  |
| 514 | */  |
| 515 | #define TJXOPT_TRIM 2  |
| 516 | /**  |
| 517 | * This option will enable lossless cropping. See #tjTransform() for more  |
| 518 | * information.  |
| 519 | */  |
| 520 | #define TJXOPT_CROP 4  |
| 521 | /**  |
| 522 | * This option will discard the color data in the input image and produce  |
| 523 | * a grayscale output image.  |
| 524 | */  |
| 525 | #define TJXOPT_GRAY 8  |
| 526 | /**  |
| 527 | * This option will prevent #tjTransform() from outputting a JPEG image for  |
| 528 | * this particular transform (this can be used in conjunction with a custom  |
| 529 | * filter to capture the transformed DCT coefficients without transcoding  |
| 530 | * them.)  |
| 531 | */  |
| 532 | #define TJXOPT_NOOUTPUT 16  |
| 533 | /**  |
| 534 | * This option will enable progressive entropy coding in the output image  |
| 535 | * generated by this particular transform. Progressive entropy coding will  |
| 536 | * generally improve compression relative to baseline entropy coding (the  |
| 537 | * default), but it will reduce compression and decompression performance  |
| 538 | * considerably.  |
| 539 | */  |
| 540 | #define TJXOPT_PROGRESSIVE 32  |
| 541 | /**  |
| 542 | * This option will prevent #tjTransform() from copying any extra markers  |
| 543 | * (including EXIF and ICC profile data) from the source image to the output  |
| 544 | * image.  |
| 545 | */  |
| 546 | #define TJXOPT_COPYNONE 64  |
| 547 |   |
| 548 |   |
| 549 | /**  |
| 550 | * Scaling factor  |
| 551 | */  |
| 552 | typedef struct {  |
| 553 | /**  |
| 554 | * Numerator  |
| 555 | */  |
| 556 | int num;  |
| 557 | /**  |
| 558 | * Denominator  |
| 559 | */  |
| 560 | int denom;  |
| 561 | } tjscalingfactor;  |
| 562 |   |
| 563 | /**  |
| 564 | * Cropping region  |
| 565 | */  |
| 566 | typedef struct {  |
| 567 | /**  |
| 568 | * The left boundary of the cropping region. This must be evenly divisible  |
| 569 | * by the MCU block width (see #tjMCUWidth.)  |
| 570 | */  |
| 571 | int x;  |
| 572 | /**  |
| 573 | * The upper boundary of the cropping region. This must be evenly divisible  |
| 574 | * by the MCU block height (see #tjMCUHeight.)  |
| 575 | */  |
| 576 | int y;  |
| 577 | /**  |
| 578 | * The width of the cropping region. Setting this to 0 is the equivalent of  |
| 579 | * setting it to the width of the source JPEG image - x.  |
| 580 | */  |
| 581 | int w;  |
| 582 | /**  |
| 583 | * The height of the cropping region. Setting this to 0 is the equivalent of  |
| 584 | * setting it to the height of the source JPEG image - y.  |
| 585 | */  |
| 586 | int h;  |
| 587 | } tjregion;  |
| 588 |   |
| 589 | /**  |
| 590 | * Lossless transform  |
| 591 | */  |
| 592 | typedef struct tjtransform {  |
| 593 | /**  |
| 594 | * Cropping region  |
| 595 | */  |
| 596 | tjregion r;  |
| 597 | /**  |
| 598 | * One of the @ref TJXOP "transform operations"  |
| 599 | */  |
| 600 | int op;  |
| 601 | /**  |
| 602 | * The bitwise OR of one of more of the @ref TJXOPT_CROP "transform options"  |
| 603 | */  |
| 604 | int options;  |
| 605 | /**  |
| 606 | * Arbitrary data that can be accessed within the body of the callback  |
| 607 | * function  |
| 608 | */  |
| 609 | void *data;  |
| 610 | /**  |
| 611 | * A callback function that can be used to modify the DCT coefficients  |
| 612 | * after they are losslessly transformed but before they are transcoded to a  |
| 613 | * new JPEG image. This allows for custom filters or other transformations  |
| 614 | * to be applied in the frequency domain.  |
| 615 | *  |
| 616 | * @param coeffs pointer to an array of transformed DCT coefficients. (NOTE:  |
| 617 | * this pointer is not guaranteed to be valid once the callback returns, so  |
| 618 | * applications wishing to hand off the DCT coefficients to another function  |
| 619 | * or library should make a copy of them within the body of the callback.)  |
| 620 | *  |
| 621 | * @param arrayRegion #tjregion structure containing the width and height of  |
| 622 | * the array pointed to by <tt>coeffs</tt> as well as its offset relative to  |
| 623 | * the component plane. TurboJPEG implementations may choose to split each  |
| 624 | * component plane into multiple DCT coefficient arrays and call the callback  |
| 625 | * function once for each array.  |
| 626 | *  |
| 627 | * @param planeRegion #tjregion structure containing the width and height of  |
| 628 | * the component plane to which <tt>coeffs</tt> belongs  |
| 629 | *  |
| 630 | * @param componentID ID number of the component plane to which  |
| 631 | * <tt>coeffs</tt> belongs (Y, Cb, and Cr have, respectively, ID's of 0, 1,  |
| 632 | * and 2 in typical JPEG images.)  |
| 633 | *  |
| 634 | * @param transformID ID number of the transformed image to which  |
| 635 | * <tt>coeffs</tt> belongs. This is the same as the index of the transform  |
| 636 | * in the <tt>transforms</tt> array that was passed to #tjTransform().  |
| 637 | *  |
| 638 | * @param transform a pointer to a #tjtransform structure that specifies the  |
| 639 | * parameters and/or cropping region for this transform  |
| 640 | *  |
| 641 | * @return 0 if the callback was successful, or -1 if an error occurred.  |
| 642 | */  |
| 643 | int (*customFilter) (short *coeffs, tjregion arrayRegion,  |
| 644 | tjregion planeRegion, int componentIndex,  |
| 645 | int transformIndex, struct tjtransform *transform);  |
| 646 | } tjtransform;  |
| 647 |   |
| 648 | /**  |
| 649 | * TurboJPEG instance handle  |
| 650 | */  |
| 651 | typedef void *tjhandle;  |
| 652 |   |
| 653 |   |
| 654 | /**  |
| 655 | * Pad the given width to the nearest 32-bit boundary  |
| 656 | */  |
| 657 | #define TJPAD(width) (((width) + 3) & (~3))  |
| 658 |   |
| 659 | /**  |
| 660 | * Compute the scaled value of <tt>dimension</tt> using the given scaling  |
| 661 | * factor. This macro performs the integer equivalent of <tt>ceil(dimension *  |
| 662 | * scalingFactor)</tt>.  |
| 663 | */  |
| 664 | #define TJSCALED(dimension, scalingFactor) \  |
| 665 | ((dimension * scalingFactor.num + scalingFactor.denom - 1) / \  |
| 666 | scalingFactor.denom)  |
| 667 |   |
| 668 |   |
| 669 | #ifdef __cplusplus  |
| 670 | extern "C" {  |
| 671 | #endif  |
| 672 |   |
| 673 |   |
| 674 | /**  |
| 675 | * Create a TurboJPEG compressor instance.  |
| 676 | *  |
| 677 | * @return a handle to the newly-created instance, or NULL if an error  |
| 678 | * occurred (see #tjGetErrorStr2().)  |
| 679 | */  |
| 680 | DLLEXPORT tjhandle tjInitCompress(void);  |
| 681 |   |
| 682 |   |
| 683 | /**  |
| 684 | * Compress an RGB, grayscale, or CMYK image into a JPEG image.  |
| 685 | *  |
| 686 | * @param handle a handle to a TurboJPEG compressor or transformer instance  |
| 687 | *  |
| 688 | * @param srcBuf pointer to an image buffer containing RGB, grayscale, or  |
| 689 | * CMYK pixels to be compressed  |
| 690 | *  |
| 691 | * @param width width (in pixels) of the source image  |
| 692 | *  |
| 693 | * @param pitch bytes per line in the source image. Normally, this should be  |
| 694 | * <tt>width * #tjPixelSize[pixelFormat]</tt> if the image is unpadded, or  |
| 695 | * <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line of the image  |
| 696 | * is padded to the nearest 32-bit boundary, as is the case for Windows  |
| 697 | * bitmaps. You can also be clever and use this parameter to skip lines, etc.  |
| 698 | * Setting this parameter to 0 is the equivalent of setting it to  |
| 699 | * <tt>width * #tjPixelSize[pixelFormat]</tt>.  |
| 700 | *  |
| 701 | * @param height height (in pixels) of the source image  |
| 702 | *  |
| 703 | * @param pixelFormat pixel format of the source image (see @ref TJPF  |
| 704 | * "Pixel formats".)  |
| 705 | *  |
| 706 | * @param jpegBuf address of a pointer to an image buffer that will receive the  |
| 707 | * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer  |
| 708 | * to accommodate the size of the JPEG image. Thus, you can choose to:  |
| 709 | * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and  |
| 710 | * let TurboJPEG grow the buffer as needed,  |
| 711 | * -# set <tt>*jpegBuf</tt> to NULL to tell TurboJPEG to allocate the buffer  |
| 712 | * for you, or  |
| 713 | * -# pre-allocate the buffer to a "worst case" size determined by calling  |
| 714 | * #tjBufSize(). This should ensure that the buffer never has to be  |
| 715 | * re-allocated (setting #TJFLAG_NOREALLOC guarantees that it won't be.)  |
| 716 | * .  |
| 717 | * If you choose option 1, <tt>*jpegSize</tt> should be set to the size of your  |
| 718 | * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC,  |
| 719 | * you should always check <tt>*jpegBuf</tt> upon return from this function, as  |
| 720 | * it may have changed.  |
| 721 | *  |
| 722 | * @param jpegSize pointer to an unsigned long variable that holds the size of  |
| 723 | * the JPEG image buffer. If <tt>*jpegBuf</tt> points to a pre-allocated  |
| 724 | * buffer, then <tt>*jpegSize</tt> should be set to the size of the buffer.  |
| 725 | * Upon return, <tt>*jpegSize</tt> will contain the size of the JPEG image (in  |
| 726 | * bytes.) If <tt>*jpegBuf</tt> points to a JPEG image buffer that is being  |
| 727 | * reused from a previous call to one of the JPEG compression functions, then  |
| 728 | * <tt>*jpegSize</tt> is ignored.  |
| 729 | *  |
| 730 | * @param jpegSubsamp the level of chrominance subsampling to be used when  |
| 731 | * generating the JPEG image (see @ref TJSAMP  |
| 732 | * "Chrominance subsampling options".)  |
| 733 | *  |
| 734 | * @param jpegQual the image quality of the generated JPEG image (1 = worst,  |
| 735 | * 100 = best)  |
| 736 | *  |
| 737 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 738 | * "flags"  |
| 739 | *  |
| 740 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 741 | * and #tjGetErrorCode().)  |
| 742 | */  |
| 743 | DLLEXPORT int tjCompress2(tjhandle handle, const unsigned char *srcBuf,  |
| 744 | int width, int pitch, int height, int pixelFormat,  |
| 745 | unsigned char **jpegBuf, unsigned long *jpegSize,  |
| 746 | int jpegSubsamp, int jpegQual, int flags);  |
| 747 |   |
| 748 |   |
| 749 | /**  |
| 750 | * Compress a YUV planar image into a JPEG image.  |
| 751 | *  |
| 752 | * @param handle a handle to a TurboJPEG compressor or transformer instance  |
| 753 | *  |
| 754 | * @param srcBuf pointer to an image buffer containing a YUV planar image to be  |
| 755 | * compressed. The size of this buffer should match the value returned by  |
| 756 | * #tjBufSizeYUV2() for the given image width, height, padding, and level of  |
| 757 | * chrominance subsampling. The Y, U (Cb), and V (Cr) image planes should be  |
| 758 | * stored sequentially in the source buffer (refer to @ref YUVnotes  |
| 759 | * "YUV Image Format Notes".)  |
| 760 | *  |
| 761 | * @param width width (in pixels) of the source image. If the width is not an  |
| 762 | * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate  |
| 763 | * buffer copy will be performed within TurboJPEG.  |
| 764 | *  |
| 765 | * @param pad the line padding used in the source image. For instance, if each  |
| 766 | * line in each plane of the YUV image is padded to the nearest multiple of 4  |
| 767 | * bytes, then <tt>pad</tt> should be set to 4.  |
| 768 | *  |
| 769 | * @param height height (in pixels) of the source image. If the height is not  |
| 770 | * an even multiple of the MCU block height (see #tjMCUHeight), then an  |
| 771 | * intermediate buffer copy will be performed within TurboJPEG.  |
| 772 | *  |
| 773 | * @param subsamp the level of chrominance subsampling used in the source  |
| 774 | * image (see @ref TJSAMP "Chrominance subsampling options".)  |
| 775 | *  |
| 776 | * @param jpegBuf address of a pointer to an image buffer that will receive the  |
| 777 | * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to  |
| 778 | * accommodate the size of the JPEG image. Thus, you can choose to:  |
| 779 | * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and  |
| 780 | * let TurboJPEG grow the buffer as needed,  |
| 781 | * -# set <tt>*jpegBuf</tt> to NULL to tell TurboJPEG to allocate the buffer  |
| 782 | * for you, or  |
| 783 | * -# pre-allocate the buffer to a "worst case" size determined by calling  |
| 784 | * #tjBufSize(). This should ensure that the buffer never has to be  |
| 785 | * re-allocated (setting #TJFLAG_NOREALLOC guarantees that it won't be.)  |
| 786 | * .  |
| 787 | * If you choose option 1, <tt>*jpegSize</tt> should be set to the size of your  |
| 788 | * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC,  |
| 789 | * you should always check <tt>*jpegBuf</tt> upon return from this function, as  |
| 790 | * it may have changed.  |
| 791 | *  |
| 792 | * @param jpegSize pointer to an unsigned long variable that holds the size of  |
| 793 | * the JPEG image buffer. If <tt>*jpegBuf</tt> points to a pre-allocated  |
| 794 | * buffer, then <tt>*jpegSize</tt> should be set to the size of the buffer.  |
| 795 | * Upon return, <tt>*jpegSize</tt> will contain the size of the JPEG image (in  |
| 796 | * bytes.) If <tt>*jpegBuf</tt> points to a JPEG image buffer that is being  |
| 797 | * reused from a previous call to one of the JPEG compression functions, then  |
| 798 | * <tt>*jpegSize</tt> is ignored.  |
| 799 | *  |
| 800 | * @param jpegQual the image quality of the generated JPEG image (1 = worst,  |
| 801 | * 100 = best)  |
| 802 | *  |
| 803 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 804 | * "flags"  |
| 805 | *  |
| 806 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 807 | * and #tjGetErrorCode().)  |
| 808 | */  |
| 809 | DLLEXPORT int tjCompressFromYUV(tjhandle handle, const unsigned char *srcBuf,  |
| 810 | int width, int pad, int height, int subsamp,  |
| 811 | unsigned char **jpegBuf,  |
| 812 | unsigned long *jpegSize, int jpegQual,  |
| 813 | int flags);  |
| 814 |   |
| 815 |   |
| 816 | /**  |
| 817 | * Compress a set of Y, U (Cb), and V (Cr) image planes into a JPEG image.  |
| 818 | *  |
| 819 | * @param handle a handle to a TurboJPEG compressor or transformer instance  |
| 820 | *  |
| 821 | * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes  |
| 822 | * (or just a Y plane, if compressing a grayscale image) that contain a YUV  |
| 823 | * image to be compressed. These planes can be contiguous or non-contiguous in  |
| 824 | * memory. The size of each plane should match the value returned by  |
| 825 | * #tjPlaneSizeYUV() for the given image width, height, strides, and level of  |
| 826 | * chrominance subsampling. Refer to @ref YUVnotes "YUV Image Format Notes"  |
| 827 | * for more details.  |
| 828 | *  |
| 829 | * @param width width (in pixels) of the source image. If the width is not an  |
| 830 | * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate  |
| 831 | * buffer copy will be performed within TurboJPEG.  |
| 832 | *  |
| 833 | * @param strides an array of integers, each specifying the number of bytes per  |
| 834 | * line in the corresponding plane of the YUV source image. Setting the stride  |
| 835 | * for any plane to 0 is the same as setting it to the plane width (see  |
| 836 | * @ref YUVnotes "YUV Image Format Notes".) If <tt>strides</tt> is NULL, then  |
| 837 | * the strides for all planes will be set to their respective plane widths.  |
| 838 | * You can adjust the strides in order to specify an arbitrary amount of line  |
| 839 | * padding in each plane or to create a JPEG image from a subregion of a larger  |
| 840 | * YUV planar image.  |
| 841 | *  |
| 842 | * @param height height (in pixels) of the source image. If the height is not  |
| 843 | * an even multiple of the MCU block height (see #tjMCUHeight), then an  |
| 844 | * intermediate buffer copy will be performed within TurboJPEG.  |
| 845 | *  |
| 846 | * @param subsamp the level of chrominance subsampling used in the source  |
| 847 | * image (see @ref TJSAMP "Chrominance subsampling options".)  |
| 848 | *  |
| 849 | * @param jpegBuf address of a pointer to an image buffer that will receive the  |
| 850 | * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to  |
| 851 | * accommodate the size of the JPEG image. Thus, you can choose to:  |
| 852 | * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and  |
| 853 | * let TurboJPEG grow the buffer as needed,  |
| 854 | * -# set <tt>*jpegBuf</tt> to NULL to tell TurboJPEG to allocate the buffer  |
| 855 | * for you, or  |
| 856 | * -# pre-allocate the buffer to a "worst case" size determined by calling  |
| 857 | * #tjBufSize(). This should ensure that the buffer never has to be  |
| 858 | * re-allocated (setting #TJFLAG_NOREALLOC guarantees that it won't be.)  |
| 859 | * .  |
| 860 | * If you choose option 1, <tt>*jpegSize</tt> should be set to the size of your  |
| 861 | * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC,  |
| 862 | * you should always check <tt>*jpegBuf</tt> upon return from this function, as  |
| 863 | * it may have changed.  |
| 864 | *  |
| 865 | * @param jpegSize pointer to an unsigned long variable that holds the size of  |
| 866 | * the JPEG image buffer. If <tt>*jpegBuf</tt> points to a pre-allocated  |
| 867 | * buffer, then <tt>*jpegSize</tt> should be set to the size of the buffer.  |
| 868 | * Upon return, <tt>*jpegSize</tt> will contain the size of the JPEG image (in  |
| 869 | * bytes.) If <tt>*jpegBuf</tt> points to a JPEG image buffer that is being  |
| 870 | * reused from a previous call to one of the JPEG compression functions, then  |
| 871 | * <tt>*jpegSize</tt> is ignored.  |
| 872 | *  |
| 873 | * @param jpegQual the image quality of the generated JPEG image (1 = worst,  |
| 874 | * 100 = best)  |
| 875 | *  |
| 876 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 877 | * "flags"  |
| 878 | *  |
| 879 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 880 | * and #tjGetErrorCode().)  |
| 881 | */  |
| 882 | DLLEXPORT int tjCompressFromYUVPlanes(tjhandle handle,  |
| 883 | const unsigned char **srcPlanes,  |
| 884 | int width, const int *strides,  |
| 885 | int height, int subsamp,  |
| 886 | unsigned char **jpegBuf,  |
| 887 | unsigned long *jpegSize, int jpegQual,  |
| 888 | int flags);  |
| 889 |   |
| 890 |   |
| 891 | /**  |
| 892 | * The maximum size of the buffer (in bytes) required to hold a JPEG image with  |
| 893 | * the given parameters. The number of bytes returned by this function is  |
| 894 | * larger than the size of the uncompressed source image. The reason for this  |
| 895 | * is that the JPEG format uses 16-bit coefficients, and it is thus possible  |
| 896 | * for a very high-quality JPEG image with very high-frequency content to  |
| 897 | * expand rather than compress when converted to the JPEG format. Such images  |
| 898 | * represent a very rare corner case, but since there is no way to predict the  |
| 899 | * size of a JPEG image prior to compression, the corner case has to be  |
| 900 | * handled.  |
| 901 | *  |
| 902 | * @param width width (in pixels) of the image  |
| 903 | *  |
| 904 | * @param height height (in pixels) of the image  |
| 905 | *  |
| 906 | * @param jpegSubsamp the level of chrominance subsampling to be used when  |
| 907 | * generating the JPEG image (see @ref TJSAMP  |
| 908 | * "Chrominance subsampling options".)  |
| 909 | *  |
| 910 | * @return the maximum size of the buffer (in bytes) required to hold the  |
| 911 | * image, or -1 if the arguments are out of bounds.  |
| 912 | */  |
| 913 | DLLEXPORT unsigned long tjBufSize(int width, int height, int jpegSubsamp);  |
| 914 |   |
| 915 |   |
| 916 | /**  |
| 917 | * The size of the buffer (in bytes) required to hold a YUV planar image with  |
| 918 | * the given parameters.  |
| 919 | *  |
| 920 | * @param width width (in pixels) of the image  |
| 921 | *  |
| 922 | * @param pad the width of each line in each plane of the image is padded to  |
| 923 | * the nearest multiple of this number of bytes (must be a power of 2.)  |
| 924 | *  |
| 925 | * @param height height (in pixels) of the image  |
| 926 | *  |
| 927 | * @param subsamp level of chrominance subsampling in the image (see  |
| 928 | * @ref TJSAMP "Chrominance subsampling options".)  |
| 929 | *  |
| 930 | * @return the size of the buffer (in bytes) required to hold the image, or  |
| 931 | * -1 if the arguments are out of bounds.  |
| 932 | */  |
| 933 | DLLEXPORT unsigned long tjBufSizeYUV2(int width, int pad, int height,  |
| 934 | int subsamp);  |
| 935 |   |
| 936 |   |
| 937 | /**  |
| 938 | * The size of the buffer (in bytes) required to hold a YUV image plane with  |
| 939 | * the given parameters.  |
| 940 | *  |
| 941 | * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)  |
| 942 | *  |
| 943 | * @param width width (in pixels) of the YUV image. NOTE: this is the width of  |
| 944 | * the whole image, not the plane width.  |
| 945 | *  |
| 946 | * @param stride bytes per line in the image plane. Setting this to 0 is the  |
| 947 | * equivalent of setting it to the plane width.  |
| 948 | *  |
| 949 | * @param height height (in pixels) of the YUV image. NOTE: this is the height  |
| 950 | * of the whole image, not the plane height.  |
| 951 | *  |
| 952 | * @param subsamp level of chrominance subsampling in the image (see  |
| 953 | * @ref TJSAMP "Chrominance subsampling options".)  |
| 954 | *  |
| 955 | * @return the size of the buffer (in bytes) required to hold the YUV image  |
| 956 | * plane, or -1 if the arguments are out of bounds.  |
| 957 | */  |
| 958 | DLLEXPORT unsigned long tjPlaneSizeYUV(int componentID, int width, int stride,  |
| 959 | int height, int subsamp);  |
| 960 |   |
| 961 |   |
| 962 | /**  |
| 963 | * The plane width of a YUV image plane with the given parameters. Refer to  |
| 964 | * @ref YUVnotes "YUV Image Format Notes" for a description of plane width.  |
| 965 | *  |
| 966 | * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)  |
| 967 | *  |
| 968 | * @param width width (in pixels) of the YUV image  |
| 969 | *  |
| 970 | * @param subsamp level of chrominance subsampling in the image (see  |
| 971 | * @ref TJSAMP "Chrominance subsampling options".)  |
| 972 | *  |
| 973 | * @return the plane width of a YUV image plane with the given parameters, or  |
| 974 | * -1 if the arguments are out of bounds.  |
| 975 | */  |
| 976 | DLLEXPORT int tjPlaneWidth(int componentID, int width, int subsamp);  |
| 977 |   |
| 978 |   |
| 979 | /**  |
| 980 | * The plane height of a YUV image plane with the given parameters. Refer to  |
| 981 | * @ref YUVnotes "YUV Image Format Notes" for a description of plane height.  |
| 982 | *  |
| 983 | * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)  |
| 984 | *  |
| 985 | * @param height height (in pixels) of the YUV image  |
| 986 | *  |
| 987 | * @param subsamp level of chrominance subsampling in the image (see  |
| 988 | * @ref TJSAMP "Chrominance subsampling options".)  |
| 989 | *  |
| 990 | * @return the plane height of a YUV image plane with the given parameters, or  |
| 991 | * -1 if the arguments are out of bounds.  |
| 992 | */  |
| 993 | DLLEXPORT int tjPlaneHeight(int componentID, int height, int subsamp);  |
| 994 |   |
| 995 |   |
| 996 | /**  |
| 997 | * Encode an RGB or grayscale image into a YUV planar image. This function  |
| 998 | * uses the accelerated color conversion routines in the underlying  |
| 999 | * codec but does not execute any of the other steps in the JPEG compression  |
| 1000 | * process.  |
| 1001 | *  |
| 1002 | * @param handle a handle to a TurboJPEG compressor or transformer instance  |
| 1003 | *  |
| 1004 | * @param srcBuf pointer to an image buffer containing RGB or grayscale pixels  |
| 1005 | * to be encoded  |
| 1006 | *  |
| 1007 | * @param width width (in pixels) of the source image  |
| 1008 | *  |
| 1009 | * @param pitch bytes per line in the source image. Normally, this should be  |
| 1010 | * <tt>width * #tjPixelSize[pixelFormat]</tt> if the image is unpadded, or  |
| 1011 | * <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line of the image  |
| 1012 | * is padded to the nearest 32-bit boundary, as is the case for Windows  |
| 1013 | * bitmaps. You can also be clever and use this parameter to skip lines, etc.  |
| 1014 | * Setting this parameter to 0 is the equivalent of setting it to  |
| 1015 | * <tt>width * #tjPixelSize[pixelFormat]</tt>.  |
| 1016 | *  |
| 1017 | * @param height height (in pixels) of the source image  |
| 1018 | *  |
| 1019 | * @param pixelFormat pixel format of the source image (see @ref TJPF  |
| 1020 | * "Pixel formats".)  |
| 1021 | *  |
| 1022 | * @param dstBuf pointer to an image buffer that will receive the YUV image.  |
| 1023 | * Use #tjBufSizeYUV2() to determine the appropriate size for this buffer based  |
| 1024 | * on the image width, height, padding, and level of chrominance subsampling.  |
| 1025 | * The Y, U (Cb), and V (Cr) image planes will be stored sequentially in the  |
| 1026 | * buffer (refer to @ref YUVnotes "YUV Image Format Notes".)  |
| 1027 | *  |
| 1028 | * @param pad the width of each line in each plane of the YUV image will be  |
| 1029 | * padded to the nearest multiple of this number of bytes (must be a power of  |
| 1030 | * 2.) To generate images suitable for X Video, <tt>pad</tt> should be set to  |
| 1031 | * 4.  |
| 1032 | *  |
| 1033 | * @param subsamp the level of chrominance subsampling to be used when  |
| 1034 | * generating the YUV image (see @ref TJSAMP  |
| 1035 | * "Chrominance subsampling options".) To generate images suitable for X  |
| 1036 | * Video, <tt>subsamp</tt> should be set to @ref TJSAMP_420. This produces an  |
| 1037 | * image compatible with the I420 (AKA "YUV420P") format.  |
| 1038 | *  |
| 1039 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 1040 | * "flags"  |
| 1041 | *  |
| 1042 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1043 | * and #tjGetErrorCode().)  |
| 1044 | */  |
| 1045 | DLLEXPORT int tjEncodeYUV3(tjhandle handle, const unsigned char *srcBuf,  |
| 1046 | int width, int pitch, int height, int pixelFormat,  |
| 1047 | unsigned char *dstBuf, int pad, int subsamp,  |
| 1048 | int flags);  |
| 1049 |   |
| 1050 |   |
| 1051 | /**  |
| 1052 | * Encode an RGB or grayscale image into separate Y, U (Cb), and V (Cr) image  |
| 1053 | * planes. This function uses the accelerated color conversion routines in the  |
| 1054 | * underlying codec but does not execute any of the other steps in the JPEG  |
| 1055 | * compression process.  |
| 1056 | *  |
| 1057 | * @param handle a handle to a TurboJPEG compressor or transformer instance  |
| 1058 | *  |
| 1059 | * @param srcBuf pointer to an image buffer containing RGB or grayscale pixels  |
| 1060 | * to be encoded  |
| 1061 | *  |
| 1062 | * @param width width (in pixels) of the source image  |
| 1063 | *  |
| 1064 | * @param pitch bytes per line in the source image. Normally, this should be  |
| 1065 | * <tt>width * #tjPixelSize[pixelFormat]</tt> if the image is unpadded, or  |
| 1066 | * <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line of the image  |
| 1067 | * is padded to the nearest 32-bit boundary, as is the case for Windows  |
| 1068 | * bitmaps. You can also be clever and use this parameter to skip lines, etc.  |
| 1069 | * Setting this parameter to 0 is the equivalent of setting it to  |
| 1070 | * <tt>width * #tjPixelSize[pixelFormat]</tt>.  |
| 1071 | *  |
| 1072 | * @param height height (in pixels) of the source image  |
| 1073 | *  |
| 1074 | * @param pixelFormat pixel format of the source image (see @ref TJPF  |
| 1075 | * "Pixel formats".)  |
| 1076 | *  |
| 1077 | * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes  |
| 1078 | * (or just a Y plane, if generating a grayscale image) that will receive the  |
| 1079 | * encoded image. These planes can be contiguous or non-contiguous in memory.  |
| 1080 | * Use #tjPlaneSizeYUV() to determine the appropriate size for each plane based  |
| 1081 | * on the image width, height, strides, and level of chrominance subsampling.  |
| 1082 | * Refer to @ref YUVnotes "YUV Image Format Notes" for more details.  |
| 1083 | *  |
| 1084 | * @param strides an array of integers, each specifying the number of bytes per  |
| 1085 | * line in the corresponding plane of the output image. Setting the stride for  |
| 1086 | * any plane to 0 is the same as setting it to the plane width (see  |
| 1087 | * @ref YUVnotes "YUV Image Format Notes".) If <tt>strides</tt> is NULL, then  |
| 1088 | * the strides for all planes will be set to their respective plane widths.  |
| 1089 | * You can adjust the strides in order to add an arbitrary amount of line  |
| 1090 | * padding to each plane or to encode an RGB or grayscale image into a  |
| 1091 | * subregion of a larger YUV planar image.  |
| 1092 | *  |
| 1093 | * @param subsamp the level of chrominance subsampling to be used when  |
| 1094 | * generating the YUV image (see @ref TJSAMP  |
| 1095 | * "Chrominance subsampling options".) To generate images suitable for X  |
| 1096 | * Video, <tt>subsamp</tt> should be set to @ref TJSAMP_420. This produces an  |
| 1097 | * image compatible with the I420 (AKA "YUV420P") format.  |
| 1098 | *  |
| 1099 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 1100 | * "flags"  |
| 1101 | *  |
| 1102 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1103 | * and #tjGetErrorCode().)  |
| 1104 | */  |
| 1105 | DLLEXPORT int tjEncodeYUVPlanes(tjhandle handle, const unsigned char *srcBuf,  |
| 1106 | int width, int pitch, int height,  |
| 1107 | int pixelFormat, unsigned char **dstPlanes,  |
| 1108 | int *strides, int subsamp, int flags);  |
| 1109 |   |
| 1110 |   |
| 1111 | /**  |
| 1112 | * Create a TurboJPEG decompressor instance.  |
| 1113 | *  |
| 1114 | * @return a handle to the newly-created instance, or NULL if an error  |
| 1115 | * occurred (see #tjGetErrorStr2().)  |
| 1116 | */  |
| 1117 | DLLEXPORT tjhandle tjInitDecompress(void);  |
| 1118 |   |
| 1119 |   |
| 1120 | /**  |
| 1121 | * Retrieve information about a JPEG image without decompressing it.  |
| 1122 | *  |
| 1123 | * @param handle a handle to a TurboJPEG decompressor or transformer instance  |
| 1124 | *  |
| 1125 | * @param jpegBuf pointer to a buffer containing a JPEG image  |
| 1126 | *  |
| 1127 | * @param jpegSize size of the JPEG image (in bytes)  |
| 1128 | *  |
| 1129 | * @param width pointer to an integer variable that will receive the width (in  |
| 1130 | * pixels) of the JPEG image  |
| 1131 | *  |
| 1132 | * @param height pointer to an integer variable that will receive the height  |
| 1133 | * (in pixels) of the JPEG image  |
| 1134 | *  |
| 1135 | * @param jpegSubsamp pointer to an integer variable that will receive the  |
| 1136 | * level of chrominance subsampling used when the JPEG image was compressed  |
| 1137 | * (see @ref TJSAMP "Chrominance subsampling options".)  |
| 1138 | *  |
| 1139 | * @param jpegColorspace pointer to an integer variable that will receive one  |
| 1140 | * of the JPEG colorspace constants, indicating the colorspace of the JPEG  |
| 1141 | * image (see @ref TJCS "JPEG colorspaces".)  |
| 1142 | *  |
| 1143 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1144 | * and #tjGetErrorCode().)  |
| 1145 | */  |
| 1146 | DLLEXPORT int (tjhandle handle,  |
| 1147 | const unsigned char *jpegBuf,  |
| 1148 | unsigned long jpegSize, int *width,  |
| 1149 | int *height, int *jpegSubsamp,  |
| 1150 | int *jpegColorspace);  |
| 1151 |   |
| 1152 |   |
| 1153 | /**  |
| 1154 | * Returns a list of fractional scaling factors that the JPEG decompressor in  |
| 1155 | * this implementation of TurboJPEG supports.  |
| 1156 | *  |
| 1157 | * @param numscalingfactors pointer to an integer variable that will receive  |
| 1158 | * the number of elements in the list  |
| 1159 | *  |
| 1160 | * @return a pointer to a list of fractional scaling factors, or NULL if an  |
| 1161 | * error is encountered (see #tjGetErrorStr2().)  |
| 1162 | */  |
| 1163 | DLLEXPORT tjscalingfactor *tjGetScalingFactors(int *numscalingfactors);  |
| 1164 |   |
| 1165 |   |
| 1166 | /**  |
| 1167 | * Decompress a JPEG image to an RGB, grayscale, or CMYK image.  |
| 1168 | *  |
| 1169 | * @param handle a handle to a TurboJPEG decompressor or transformer instance  |
| 1170 | *  |
| 1171 | * @param jpegBuf pointer to a buffer containing the JPEG image to decompress  |
| 1172 | *  |
| 1173 | * @param jpegSize size of the JPEG image (in bytes)  |
| 1174 | *  |
| 1175 | * @param dstBuf pointer to an image buffer that will receive the decompressed  |
| 1176 | * image. This buffer should normally be <tt>pitch * scaledHeight</tt> bytes  |
| 1177 | * in size, where <tt>scaledHeight</tt> can be determined by calling  |
| 1178 | * #TJSCALED() with the JPEG image height and one of the scaling factors  |
| 1179 | * returned by #tjGetScalingFactors(). The <tt>dstBuf</tt> pointer may also be  |
| 1180 | * used to decompress into a specific region of a larger buffer.  |
| 1181 | *  |
| 1182 | * @param width desired width (in pixels) of the destination image. If this is  |
| 1183 | * different than the width of the JPEG image being decompressed, then  |
| 1184 | * TurboJPEG will use scaling in the JPEG decompressor to generate the largest  |
| 1185 | * possible image that will fit within the desired width. If <tt>width</tt> is  |
| 1186 | * set to 0, then only the height will be considered when determining the  |
| 1187 | * scaled image size.  |
| 1188 | *  |
| 1189 | * @param pitch bytes per line in the destination image. Normally, this is  |
| 1190 | * <tt>scaledWidth * #tjPixelSize[pixelFormat]</tt> if the decompressed image  |
| 1191 | * is unpadded, else <tt>#TJPAD(scaledWidth * #tjPixelSize[pixelFormat])</tt>  |
| 1192 | * if each line of the decompressed image is padded to the nearest 32-bit  |
| 1193 | * boundary, as is the case for Windows bitmaps. (NOTE: <tt>scaledWidth</tt>  |
| 1194 | * can be determined by calling #TJSCALED() with the JPEG image width and one  |
| 1195 | * of the scaling factors returned by #tjGetScalingFactors().) You can also be  |
| 1196 | * clever and use the pitch parameter to skip lines, etc. Setting this  |
| 1197 | * parameter to 0 is the equivalent of setting it to  |
| 1198 | * <tt>scaledWidth * #tjPixelSize[pixelFormat]</tt>.  |
| 1199 | *  |
| 1200 | * @param height desired height (in pixels) of the destination image. If this  |
| 1201 | * is different than the height of the JPEG image being decompressed, then  |
| 1202 | * TurboJPEG will use scaling in the JPEG decompressor to generate the largest  |
| 1203 | * possible image that will fit within the desired height. If <tt>height</tt>  |
| 1204 | * is set to 0, then only the width will be considered when determining the  |
| 1205 | * scaled image size.  |
| 1206 | *  |
| 1207 | * @param pixelFormat pixel format of the destination image (see @ref  |
| 1208 | * TJPF "Pixel formats".)  |
| 1209 | *  |
| 1210 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 1211 | * "flags"  |
| 1212 | *  |
| 1213 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1214 | * and #tjGetErrorCode().)  |
| 1215 | */  |
| 1216 | DLLEXPORT int tjDecompress2(tjhandle handle, const unsigned char *jpegBuf,  |
| 1217 | unsigned long jpegSize, unsigned char *dstBuf,  |
| 1218 | int width, int pitch, int height, int pixelFormat,  |
| 1219 | int flags);  |
| 1220 |   |
| 1221 |   |
| 1222 | /**  |
| 1223 | * Decompress a JPEG image to a YUV planar image. This function performs JPEG  |
| 1224 | * decompression but leaves out the color conversion step, so a planar YUV  |
| 1225 | * image is generated instead of an RGB image.  |
| 1226 | *  |
| 1227 | * @param handle a handle to a TurboJPEG decompressor or transformer instance  |
| 1228 | *  |
| 1229 | * @param jpegBuf pointer to a buffer containing the JPEG image to decompress  |
| 1230 | *  |
| 1231 | * @param jpegSize size of the JPEG image (in bytes)  |
| 1232 | *  |
| 1233 | * @param dstBuf pointer to an image buffer that will receive the YUV image.  |
| 1234 | * Use #tjBufSizeYUV2() to determine the appropriate size for this buffer based  |
| 1235 | * on the image width, height, padding, and level of subsampling. The Y,  |
| 1236 | * U (Cb), and V (Cr) image planes will be stored sequentially in the buffer  |
| 1237 | * (refer to @ref YUVnotes "YUV Image Format Notes".)  |
| 1238 | *  |
| 1239 | * @param width desired width (in pixels) of the YUV image. If this is  |
| 1240 | * different than the width of the JPEG image being decompressed, then  |
| 1241 | * TurboJPEG will use scaling in the JPEG decompressor to generate the largest  |
| 1242 | * possible image that will fit within the desired width. If <tt>width</tt> is  |
| 1243 | * set to 0, then only the height will be considered when determining the  |
| 1244 | * scaled image size. If the scaled width is not an even multiple of the MCU  |
| 1245 | * block width (see #tjMCUWidth), then an intermediate buffer copy will be  |
| 1246 | * performed within TurboJPEG.  |
| 1247 | *  |
| 1248 | * @param pad the width of each line in each plane of the YUV image will be  |
| 1249 | * padded to the nearest multiple of this number of bytes (must be a power of  |
| 1250 | * 2.) To generate images suitable for X Video, <tt>pad</tt> should be set to  |
| 1251 | * 4.  |
| 1252 | *  |
| 1253 | * @param height desired height (in pixels) of the YUV image. If this is  |
| 1254 | * different than the height of the JPEG image being decompressed, then  |
| 1255 | * TurboJPEG will use scaling in the JPEG decompressor to generate the largest  |
| 1256 | * possible image that will fit within the desired height. If <tt>height</tt>  |
| 1257 | * is set to 0, then only the width will be considered when determining the  |
| 1258 | * scaled image size. If the scaled height is not an even multiple of the MCU  |
| 1259 | * block height (see #tjMCUHeight), then an intermediate buffer copy will be  |
| 1260 | * performed within TurboJPEG.  |
| 1261 | *  |
| 1262 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 1263 | * "flags"  |
| 1264 | *  |
| 1265 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1266 | * and #tjGetErrorCode().)  |
| 1267 | */  |
| 1268 | DLLEXPORT int tjDecompressToYUV2(tjhandle handle, const unsigned char *jpegBuf,  |
| 1269 | unsigned long jpegSize, unsigned char *dstBuf,  |
| 1270 | int width, int pad, int height, int flags);  |
| 1271 |   |
| 1272 |   |
| 1273 | /**  |
| 1274 | * Decompress a JPEG image into separate Y, U (Cb), and V (Cr) image  |
| 1275 | * planes. This function performs JPEG decompression but leaves out the color  |
| 1276 | * conversion step, so a planar YUV image is generated instead of an RGB image.  |
| 1277 | *  |
| 1278 | * @param handle a handle to a TurboJPEG decompressor or transformer instance  |
| 1279 | *  |
| 1280 | * @param jpegBuf pointer to a buffer containing the JPEG image to decompress  |
| 1281 | *  |
| 1282 | * @param jpegSize size of the JPEG image (in bytes)  |
| 1283 | *  |
| 1284 | * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes  |
| 1285 | * (or just a Y plane, if decompressing a grayscale image) that will receive  |
| 1286 | * the YUV image. These planes can be contiguous or non-contiguous in memory.  |
| 1287 | * Use #tjPlaneSizeYUV() to determine the appropriate size for each plane based  |
| 1288 | * on the scaled image width, scaled image height, strides, and level of  |
| 1289 | * chrominance subsampling. Refer to @ref YUVnotes "YUV Image Format Notes"  |
| 1290 | * for more details.  |
| 1291 | *  |
| 1292 | * @param width desired width (in pixels) of the YUV image. If this is  |
| 1293 | * different than the width of the JPEG image being decompressed, then  |
| 1294 | * TurboJPEG will use scaling in the JPEG decompressor to generate the largest  |
| 1295 | * possible image that will fit within the desired width. If <tt>width</tt> is  |
| 1296 | * set to 0, then only the height will be considered when determining the  |
| 1297 | * scaled image size. If the scaled width is not an even multiple of the MCU  |
| 1298 | * block width (see #tjMCUWidth), then an intermediate buffer copy will be  |
| 1299 | * performed within TurboJPEG.  |
| 1300 | *  |
| 1301 | * @param strides an array of integers, each specifying the number of bytes per  |
| 1302 | * line in the corresponding plane of the output image. Setting the stride for  |
| 1303 | * any plane to 0 is the same as setting it to the scaled plane width (see  |
| 1304 | * @ref YUVnotes "YUV Image Format Notes".) If <tt>strides</tt> is NULL, then  |
| 1305 | * the strides for all planes will be set to their respective scaled plane  |
| 1306 | * widths. You can adjust the strides in order to add an arbitrary amount of  |
| 1307 | * line padding to each plane or to decompress the JPEG image into a subregion  |
| 1308 | * of a larger YUV planar image.  |
| 1309 | *  |
| 1310 | * @param height desired height (in pixels) of the YUV image. If this is  |
| 1311 | * different than the height of the JPEG image being decompressed, then  |
| 1312 | * TurboJPEG will use scaling in the JPEG decompressor to generate the largest  |
| 1313 | * possible image that will fit within the desired height. If <tt>height</tt>  |
| 1314 | * is set to 0, then only the width will be considered when determining the  |
| 1315 | * scaled image size. If the scaled height is not an even multiple of the MCU  |
| 1316 | * block height (see #tjMCUHeight), then an intermediate buffer copy will be  |
| 1317 | * performed within TurboJPEG.  |
| 1318 | *  |
| 1319 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 1320 | * "flags"  |
| 1321 | *  |
| 1322 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1323 | * and #tjGetErrorCode().)  |
| 1324 | */  |
| 1325 | DLLEXPORT int tjDecompressToYUVPlanes(tjhandle handle,  |
| 1326 | const unsigned char *jpegBuf,  |
| 1327 | unsigned long jpegSize,  |
| 1328 | unsigned char **dstPlanes, int width,  |
| 1329 | int *strides, int height, int flags);  |
| 1330 |   |
| 1331 |   |
| 1332 | /**  |
| 1333 | * Decode a YUV planar image into an RGB or grayscale image. This function  |
| 1334 | * uses the accelerated color conversion routines in the underlying  |
| 1335 | * codec but does not execute any of the other steps in the JPEG decompression  |
| 1336 | * process.  |
| 1337 | *  |
| 1338 | * @param handle a handle to a TurboJPEG decompressor or transformer instance  |
| 1339 | *  |
| 1340 | * @param srcBuf pointer to an image buffer containing a YUV planar image to be  |
| 1341 | * decoded. The size of this buffer should match the value returned by  |
| 1342 | * #tjBufSizeYUV2() for the given image width, height, padding, and level of  |
| 1343 | * chrominance subsampling. The Y, U (Cb), and V (Cr) image planes should be  |
| 1344 | * stored sequentially in the source buffer (refer to @ref YUVnotes  |
| 1345 | * "YUV Image Format Notes".)  |
| 1346 | *  |
| 1347 | * @param pad Use this parameter to specify that the width of each line in each  |
| 1348 | * plane of the YUV source image is padded to the nearest multiple of this  |
| 1349 | * number of bytes (must be a power of 2.)  |
| 1350 | *  |
| 1351 | * @param subsamp the level of chrominance subsampling used in the YUV source  |
| 1352 | * image (see @ref TJSAMP "Chrominance subsampling options".)  |
| 1353 | *  |
| 1354 | * @param dstBuf pointer to an image buffer that will receive the decoded  |
| 1355 | * image. This buffer should normally be <tt>pitch * height</tt> bytes in  |
| 1356 | * size, but the <tt>dstBuf</tt> pointer can also be used to decode into a  |
| 1357 | * specific region of a larger buffer.  |
| 1358 | *  |
| 1359 | * @param width width (in pixels) of the source and destination images  |
| 1360 | *  |
| 1361 | * @param pitch bytes per line in the destination image. Normally, this should  |
| 1362 | * be <tt>width * #tjPixelSize[pixelFormat]</tt> if the destination image is  |
| 1363 | * unpadded, or <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line  |
| 1364 | * of the destination image should be padded to the nearest 32-bit boundary, as  |
| 1365 | * is the case for Windows bitmaps. You can also be clever and use the pitch  |
| 1366 | * parameter to skip lines, etc. Setting this parameter to 0 is the equivalent  |
| 1367 | * of setting it to <tt>width * #tjPixelSize[pixelFormat]</tt>.  |
| 1368 | *  |
| 1369 | * @param height height (in pixels) of the source and destination images  |
| 1370 | *  |
| 1371 | * @param pixelFormat pixel format of the destination image (see @ref TJPF  |
| 1372 | * "Pixel formats".)  |
| 1373 | *  |
| 1374 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 1375 | * "flags"  |
| 1376 | *  |
| 1377 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1378 | * and #tjGetErrorCode().)  |
| 1379 | */  |
| 1380 | DLLEXPORT int tjDecodeYUV(tjhandle handle, const unsigned char *srcBuf,  |
| 1381 | int pad, int subsamp, unsigned char *dstBuf,  |
| 1382 | int width, int pitch, int height, int pixelFormat,  |
| 1383 | int flags);  |
| 1384 |   |
| 1385 |   |
| 1386 | /**  |
| 1387 | * Decode a set of Y, U (Cb), and V (Cr) image planes into an RGB or grayscale  |
| 1388 | * image. This function uses the accelerated color conversion routines in the  |
| 1389 | * underlying codec but does not execute any of the other steps in the JPEG  |
| 1390 | * decompression process.  |
| 1391 | *  |
| 1392 | * @param handle a handle to a TurboJPEG decompressor or transformer instance  |
| 1393 | *  |
| 1394 | * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes  |
| 1395 | * (or just a Y plane, if decoding a grayscale image) that contain a YUV image  |
| 1396 | * to be decoded. These planes can be contiguous or non-contiguous in memory.  |
| 1397 | * The size of each plane should match the value returned by #tjPlaneSizeYUV()  |
| 1398 | * for the given image width, height, strides, and level of chrominance  |
| 1399 | * subsampling. Refer to @ref YUVnotes "YUV Image Format Notes" for more  |
| 1400 | * details.  |
| 1401 | *  |
| 1402 | * @param strides an array of integers, each specifying the number of bytes per  |
| 1403 | * line in the corresponding plane of the YUV source image. Setting the stride  |
| 1404 | * for any plane to 0 is the same as setting it to the plane width (see  |
| 1405 | * @ref YUVnotes "YUV Image Format Notes".) If <tt>strides</tt> is NULL, then  |
| 1406 | * the strides for all planes will be set to their respective plane widths.  |
| 1407 | * You can adjust the strides in order to specify an arbitrary amount of line  |
| 1408 | * padding in each plane or to decode a subregion of a larger YUV planar image.  |
| 1409 | *  |
| 1410 | * @param subsamp the level of chrominance subsampling used in the YUV source  |
| 1411 | * image (see @ref TJSAMP "Chrominance subsampling options".)  |
| 1412 | *  |
| 1413 | * @param dstBuf pointer to an image buffer that will receive the decoded  |
| 1414 | * image. This buffer should normally be <tt>pitch * height</tt> bytes in  |
| 1415 | * size, but the <tt>dstBuf</tt> pointer can also be used to decode into a  |
| 1416 | * specific region of a larger buffer.  |
| 1417 | *  |
| 1418 | * @param width width (in pixels) of the source and destination images  |
| 1419 | *  |
| 1420 | * @param pitch bytes per line in the destination image. Normally, this should  |
| 1421 | * be <tt>width * #tjPixelSize[pixelFormat]</tt> if the destination image is  |
| 1422 | * unpadded, or <tt>#TJPAD(width * #tjPixelSize[pixelFormat])</tt> if each line  |
| 1423 | * of the destination image should be padded to the nearest 32-bit boundary, as  |
| 1424 | * is the case for Windows bitmaps. You can also be clever and use the pitch  |
| 1425 | * parameter to skip lines, etc. Setting this parameter to 0 is the equivalent  |
| 1426 | * of setting it to <tt>width * #tjPixelSize[pixelFormat]</tt>.  |
| 1427 | *  |
| 1428 | * @param height height (in pixels) of the source and destination images  |
| 1429 | *  |
| 1430 | * @param pixelFormat pixel format of the destination image (see @ref TJPF  |
| 1431 | * "Pixel formats".)  |
| 1432 | *  |
| 1433 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 1434 | * "flags"  |
| 1435 | *  |
| 1436 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1437 | * and #tjGetErrorCode().)  |
| 1438 | */  |
| 1439 | DLLEXPORT int tjDecodeYUVPlanes(tjhandle handle,  |
| 1440 | const unsigned char **srcPlanes,  |
| 1441 | const int *strides, int subsamp,  |
| 1442 | unsigned char *dstBuf, int width, int pitch,  |
| 1443 | int height, int pixelFormat, int flags);  |
| 1444 |   |
| 1445 |   |
| 1446 | /**  |
| 1447 | * Create a new TurboJPEG transformer instance.  |
| 1448 | *  |
| 1449 | * @return a handle to the newly-created instance, or NULL if an error  |
| 1450 | * occurred (see #tjGetErrorStr2().)  |
| 1451 | */  |
| 1452 | DLLEXPORT tjhandle tjInitTransform(void);  |
| 1453 |   |
| 1454 |   |
| 1455 | /**  |
| 1456 | * Losslessly transform a JPEG image into another JPEG image. Lossless  |
| 1457 | * transforms work by moving the raw DCT coefficients from one JPEG image  |
| 1458 | * structure to another without altering the values of the coefficients. While  |
| 1459 | * this is typically faster than decompressing the image, transforming it, and  |
| 1460 | * re-compressing it, lossless transforms are not free. Each lossless  |
| 1461 | * transform requires reading and performing Huffman decoding on all of the  |
| 1462 | * coefficients in the source image, regardless of the size of the destination  |
| 1463 | * image. Thus, this function provides a means of generating multiple  |
| 1464 | * transformed images from the same source or applying multiple  |
| 1465 | * transformations simultaneously, in order to eliminate the need to read the  |
| 1466 | * source coefficients multiple times.  |
| 1467 | *  |
| 1468 | * @param handle a handle to a TurboJPEG transformer instance  |
| 1469 | *  |
| 1470 | * @param jpegBuf pointer to a buffer containing the JPEG source image to  |
| 1471 | * transform  |
| 1472 | *  |
| 1473 | * @param jpegSize size of the JPEG source image (in bytes)  |
| 1474 | *  |
| 1475 | * @param n the number of transformed JPEG images to generate  |
| 1476 | *  |
| 1477 | * @param dstBufs pointer to an array of n image buffers. <tt>dstBufs[i]</tt>  |
| 1478 | * will receive a JPEG image that has been transformed using the parameters in  |
| 1479 | * <tt>transforms[i]</tt>. TurboJPEG has the ability to reallocate the JPEG  |
| 1480 | * buffer to accommodate the size of the JPEG image. Thus, you can choose to:  |
| 1481 | * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and  |
| 1482 | * let TurboJPEG grow the buffer as needed,  |
| 1483 | * -# set <tt>dstBufs[i]</tt> to NULL to tell TurboJPEG to allocate the buffer  |
| 1484 | * for you, or  |
| 1485 | * -# pre-allocate the buffer to a "worst case" size determined by calling  |
| 1486 | * #tjBufSize() with the transformed or cropped width and height. Under normal  |
| 1487 | * circumstances, this should ensure that the buffer never has to be  |
| 1488 | * re-allocated (setting #TJFLAG_NOREALLOC guarantees that it won't be.) Note,  |
| 1489 | * however, that there are some rare cases (such as transforming images with a  |
| 1490 | * large amount of embedded EXIF or ICC profile data) in which the output image  |
| 1491 | * will be larger than the worst-case size, and #TJFLAG_NOREALLOC cannot be  |
| 1492 | * used in those cases.  |
| 1493 | * .  |
| 1494 | * If you choose option 1, <tt>dstSizes[i]</tt> should be set to the size of  |
| 1495 | * your pre-allocated buffer. In any case, unless you have set  |
| 1496 | * #TJFLAG_NOREALLOC, you should always check <tt>dstBufs[i]</tt> upon return  |
| 1497 | * from this function, as it may have changed.  |
| 1498 | *  |
| 1499 | * @param dstSizes pointer to an array of n unsigned long variables that will  |
| 1500 | * receive the actual sizes (in bytes) of each transformed JPEG image. If  |
| 1501 | * <tt>dstBufs[i]</tt> points to a pre-allocated buffer, then  |
| 1502 | * <tt>dstSizes[i]</tt> should be set to the size of the buffer. Upon return,  |
| 1503 | * <tt>dstSizes[i]</tt> will contain the size of the JPEG image (in bytes.)  |
| 1504 | *  |
| 1505 | * @param transforms pointer to an array of n #tjtransform structures, each of  |
| 1506 | * which specifies the transform parameters and/or cropping region for the  |
| 1507 | * corresponding transformed output image.  |
| 1508 | *  |
| 1509 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT  |
| 1510 | * "flags"  |
| 1511 | *  |
| 1512 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2()  |
| 1513 | * and #tjGetErrorCode().)  |
| 1514 | */  |
| 1515 | DLLEXPORT int tjTransform(tjhandle handle, const unsigned char *jpegBuf,  |
| 1516 | unsigned long jpegSize, int n,  |
| 1517 | unsigned char **dstBufs, unsigned long *dstSizes,  |
| 1518 | tjtransform *transforms, int flags);  |
| 1519 |   |
| 1520 |   |
| 1521 | /**  |
| 1522 | * Destroy a TurboJPEG compressor, decompressor, or transformer instance.  |
| 1523 | *  |
| 1524 | * @param handle a handle to a TurboJPEG compressor, decompressor or  |
| 1525 | * transformer instance  |
| 1526 | *  |
| 1527 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2().)  |
| 1528 | */  |
| 1529 | DLLEXPORT int tjDestroy(tjhandle handle);  |
| 1530 |   |
| 1531 |   |
| 1532 | /**  |
| 1533 | * Allocate an image buffer for use with TurboJPEG. You should always use  |
| 1534 | * this function to allocate the JPEG destination buffer(s) for the compression  |
| 1535 | * and transform functions unless you are disabling automatic buffer  |
| 1536 | * (re)allocation (by setting #TJFLAG_NOREALLOC.)  |
| 1537 | *  |
| 1538 | * @param bytes the number of bytes to allocate  |
| 1539 | *  |
| 1540 | * @return a pointer to a newly-allocated buffer with the specified number of  |
| 1541 | * bytes.  |
| 1542 | *  |
| 1543 | * @sa tjFree()  |
| 1544 | */  |
| 1545 | DLLEXPORT unsigned char *tjAlloc(int bytes);  |
| 1546 |   |
| 1547 |   |
| 1548 | /**  |
| 1549 | * Load an uncompressed image from disk into memory.  |
| 1550 | *  |
| 1551 | * @param filename name of a file containing an uncompressed image in Windows  |
| 1552 | * BMP or PBMPLUS (PPM/PGM) format  |
| 1553 | *  |
| 1554 | * @param width pointer to an integer variable that will receive the width (in  |
| 1555 | * pixels) of the uncompressed image  |
| 1556 | *  |
| 1557 | * @param align row alignment of the image buffer to be returned (must be a  |
| 1558 | * power of 2.) For instance, setting this parameter to 4 will cause all rows  |
| 1559 | * in the image buffer to be padded to the nearest 32-bit boundary, and setting  |
| 1560 | * this parameter to 1 will cause all rows in the image buffer to be unpadded.  |
| 1561 | *  |
| 1562 | * @param height pointer to an integer variable that will receive the height  |
| 1563 | * (in pixels) of the uncompressed image  |
| 1564 | *  |
| 1565 | * @param pixelFormat pointer to an integer variable that specifies or will  |
| 1566 | * receive the pixel format of the uncompressed image buffer. The behavior of  |
| 1567 | * #tjLoadImage() will vary depending on the value of <tt>*pixelFormat</tt>  |
| 1568 | * passed to the function:  |
| 1569 | * - @ref TJPF_UNKNOWN : The uncompressed image buffer returned by the function  |
| 1570 | * will use the most optimal pixel format for the file type, and  |
| 1571 | * <tt>*pixelFormat</tt> will contain the ID of this pixel format upon  |
| 1572 | * successful return from the function.  |
| 1573 | * - @ref TJPF_GRAY : Only PGM files and 8-bit BMP files with a grayscale  |
| 1574 | * colormap can be loaded.  |
| 1575 | * - @ref TJPF_CMYK : The RGB or grayscale pixels stored in the file will be  |
| 1576 | * converted using a quick & dirty algorithm that is suitable only for testing  |
| 1577 | * purposes (proper conversion between CMYK and other formats requires a color  |
| 1578 | * management system.)  |
| 1579 | * - Other @ref TJPF "pixel formats" : The uncompressed image buffer will use  |
| 1580 | * the specified pixel format, and pixel format conversion will be performed if  |
| 1581 | * necessary.  |
| 1582 | *  |
| 1583 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP  |
| 1584 | * "flags".  |
| 1585 | *  |
| 1586 | * @return a pointer to a newly-allocated buffer containing the uncompressed  |
| 1587 | * image, converted to the chosen pixel format and with the chosen row  |
| 1588 | * alignment, or NULL if an error occurred (see #tjGetErrorStr2().) This  |
| 1589 | * buffer should be freed using #tjFree().  |
| 1590 | */  |
| 1591 | DLLEXPORT unsigned char *tjLoadImage(const char *filename, int *width,  |
| 1592 | int align, int *height, int *pixelFormat,  |
| 1593 | int flags);  |
| 1594 |   |
| 1595 |   |
| 1596 | /**  |
| 1597 | * Save an uncompressed image from memory to disk.  |
| 1598 | *  |
| 1599 | * @param filename name of a file to which to save the uncompressed image.  |
| 1600 | * The image will be stored in Windows BMP or PBMPLUS (PPM/PGM) format,  |
| 1601 | * depending on the file extension.  |
| 1602 | *  |
| 1603 | * @param buffer pointer to an image buffer containing RGB, grayscale, or  |
| 1604 | * CMYK pixels to be saved  |
| 1605 | *  |
| 1606 | * @param width width (in pixels) of the uncompressed image  |
| 1607 | *  |
| 1608 | * @param pitch bytes per line in the image buffer. Setting this parameter to  |
| 1609 | * 0 is the equivalent of setting it to  |
| 1610 | * <tt>width * #tjPixelSize[pixelFormat]</tt>.  |
| 1611 | *  |
| 1612 | * @param height height (in pixels) of the uncompressed image  |
| 1613 | *  |
| 1614 | * @param pixelFormat pixel format of the image buffer (see @ref TJPF  |
| 1615 | * "Pixel formats".) If this parameter is set to @ref TJPF_GRAY, then the  |
| 1616 | * image will be stored in PGM or 8-bit (indexed color) BMP format. Otherwise,  |
| 1617 | * the image will be stored in PPM or 24-bit BMP format. If this parameter  |
| 1618 | * is set to @ref TJPF_CMYK, then the CMYK pixels will be converted to RGB  |
| 1619 | * using a quick & dirty algorithm that is suitable only for testing (proper  |
| 1620 | * conversion between CMYK and other formats requires a color management  |
| 1621 | * system.)  |
| 1622 | *  |
| 1623 | * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP  |
| 1624 | * "flags".  |
| 1625 | *  |
| 1626 | * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2().)  |
| 1627 | */  |
| 1628 | DLLEXPORT int tjSaveImage(const char *filename, unsigned char *buffer,  |
| 1629 | int width, int pitch, int height, int pixelFormat,  |
| 1630 | int flags);  |
| 1631 |   |
| 1632 |   |
| 1633 | /**  |
| 1634 | * Free an image buffer previously allocated by TurboJPEG. You should always  |
| 1635 | * use this function to free JPEG destination buffer(s) that were automatically  |
| 1636 | * (re)allocated by the compression and transform functions or that were  |
| 1637 | * manually allocated using #tjAlloc().  |
| 1638 | *  |
| 1639 | * @param buffer address of the buffer to free. If the address is NULL, then  |
| 1640 | * this function has no effect.  |
| 1641 | *  |
| 1642 | * @sa tjAlloc()  |
| 1643 | */  |
| 1644 | DLLEXPORT void tjFree(unsigned char *buffer);  |
| 1645 |   |
| 1646 |   |
| 1647 | /**  |
| 1648 | * Returns a descriptive error message explaining why the last command failed.  |
| 1649 | *  |
| 1650 | * @param handle a handle to a TurboJPEG compressor, decompressor, or  |
| 1651 | * transformer instance, or NULL if the error was generated by a global  |
| 1652 | * function (but note that retrieving the error message for a global function  |
| 1653 | * is thread-safe only on platforms that support thread-local storage.)  |
| 1654 | *  |
| 1655 | * @return a descriptive error message explaining why the last command failed.  |
| 1656 | */  |
| 1657 | DLLEXPORT char *tjGetErrorStr2(tjhandle handle);  |
| 1658 |   |
| 1659 |   |
| 1660 | /**  |
| 1661 | * Returns a code indicating the severity of the last error. See  |
| 1662 | * @ref TJERR "Error codes".  |
| 1663 | *  |
| 1664 | * @param handle a handle to a TurboJPEG compressor, decompressor or  |
| 1665 | * transformer instance  |
| 1666 | *  |
| 1667 | * @return a code indicating the severity of the last error. See  |
| 1668 | * @ref TJERR "Error codes".  |
| 1669 | */  |
| 1670 | DLLEXPORT int tjGetErrorCode(tjhandle handle);  |
| 1671 |   |
| 1672 |   |
| 1673 | /* Deprecated functions and macros */  |
| 1674 | #define TJFLAG_FORCEMMX 8  |
| 1675 | #define TJFLAG_FORCESSE 16  |
| 1676 | #define TJFLAG_FORCESSE2 32  |
| 1677 | #define TJFLAG_FORCESSE3 128  |
| 1678 |   |
| 1679 |   |
| 1680 | /* Backward compatibility functions and macros (nothing to see here) */  |
| 1681 | #define NUMSUBOPT TJ_NUMSAMP  |
| 1682 | #define TJ_444 TJSAMP_444  |
| 1683 | #define TJ_422 TJSAMP_422  |
| 1684 | #define TJ_420 TJSAMP_420  |
| 1685 | #define TJ_411 TJSAMP_420  |
| 1686 | #define TJ_GRAYSCALE TJSAMP_GRAY  |
| 1687 |   |
| 1688 | #define TJ_BGR 1  |
| 1689 | #define TJ_BOTTOMUP TJFLAG_BOTTOMUP  |
| 1690 | #define TJ_FORCEMMX TJFLAG_FORCEMMX  |
| 1691 | #define TJ_FORCESSE TJFLAG_FORCESSE  |
| 1692 | #define TJ_FORCESSE2 TJFLAG_FORCESSE2  |
| 1693 | #define TJ_ALPHAFIRST 64  |
| 1694 | #define TJ_FORCESSE3 TJFLAG_FORCESSE3  |
| 1695 | #define TJ_FASTUPSAMPLE TJFLAG_FASTUPSAMPLE  |
| 1696 | #define TJ_YUV 512  |
| 1697 |   |
| 1698 | DLLEXPORT unsigned long TJBUFSIZE(int width, int height);  |
| 1699 |   |
| 1700 | DLLEXPORT unsigned long TJBUFSIZEYUV(int width, int height, int jpegSubsamp);  |
| 1701 |   |
| 1702 | DLLEXPORT unsigned long tjBufSizeYUV(int width, int height, int subsamp);  |
| 1703 |   |
| 1704 | DLLEXPORT int tjCompress(tjhandle handle, unsigned char *srcBuf, int width,  |
| 1705 | int pitch, int height, int pixelSize,  |
| 1706 | unsigned char *dstBuf, unsigned long *compressedSize,  |
| 1707 | int jpegSubsamp, int jpegQual, int flags);  |
| 1708 |   |
| 1709 | DLLEXPORT int tjEncodeYUV(tjhandle handle, unsigned char *srcBuf, int width,  |
| 1710 | int pitch, int height, int pixelSize,  |
| 1711 | unsigned char *dstBuf, int subsamp, int flags);  |
| 1712 |   |
| 1713 | DLLEXPORT int tjEncodeYUV2(tjhandle handle, unsigned char *srcBuf, int width,  |
| 1714 | int pitch, int height, int pixelFormat,  |
| 1715 | unsigned char *dstBuf, int subsamp, int flags);  |
| 1716 |   |
| 1717 | DLLEXPORT int (tjhandle handle, unsigned char *jpegBuf,  |
| 1718 | unsigned long jpegSize, int *width,  |
| 1719 | int *height);  |
| 1720 |   |
| 1721 | DLLEXPORT int (tjhandle handle, unsigned char *jpegBuf,  |
| 1722 | unsigned long jpegSize, int *width,  |
| 1723 | int *height, int *jpegSubsamp);  |
| 1724 |   |
| 1725 | DLLEXPORT int tjDecompress(tjhandle handle, unsigned char *jpegBuf,  |
| 1726 | unsigned long jpegSize, unsigned char *dstBuf,  |
| 1727 | int width, int pitch, int height, int pixelSize,  |
| 1728 | int flags);  |
| 1729 |   |
| 1730 | DLLEXPORT int tjDecompressToYUV(tjhandle handle, unsigned char *jpegBuf,  |
| 1731 | unsigned long jpegSize, unsigned char *dstBuf,  |
| 1732 | int flags);  |
| 1733 |   |
| 1734 | DLLEXPORT char *tjGetErrorStr(void);  |
| 1735 |   |
| 1736 |   |
| 1737 | /**  |
| 1738 | * @}  |
| 1739 | */  |
| 1740 |   |
| 1741 | #ifdef __cplusplus  |
| 1742 | }  |
| 1743 | #endif  |
| 1744 |   |
| 1745 | #endif  |
| 1746 | |