| 1 | // tGeometry.cpp  |
| 2 | //  |
| 3 | // Idealized geometric shapes. These include triangles, circles, boxes, spheres, rays, lines, planes, cylinders,  |
| 4 | // capsules, frustums, and ellipses. When the shape primitives have a number in their name, it refers to the space the  |
| 5 | // shape is in, not the dimensionality of the shape itself. eg. A tCircle3 is a (2D) circle in R3 while a tCircle2 is a  |
| 6 | // 2D circle in R2. For shapes that are in R3 we drop the 3 because the R3 primitives are more general.  |
| 7 | //  |
| 8 | // Copyright (c) 2006, 2016 Tristan Grimmer.  |
| 9 | // Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby  |
| 10 | // granted, provided that the above copyright notice and this permission notice appear in all copies.  |
| 11 | //  |
| 12 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL  |
| 13 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,  |
| 14 | // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN  |
| 15 | // AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR  |
| 16 | // PERFORMANCE OF THIS SOFTWARE.  |
| 17 |   |
| 18 | #include "Math/tGeometry.h"  |
| 19 |   |
| 20 |   |
| 21 | namespace tMath  |
| 22 | {  |
| 23 | static tIntersectResult IntersectFindLineLineHelper(const tLine2& a, const tLine2& b, float& ua, float& ub);  |
| 24 | };  |
| 25 |   |
| 26 |   |
| 27 | bool tMath::tORect2::IsInside(const tVector2& point) const  |
| 28 | {  |
| 29 | tVector2 d = point - Center;  |
| 30 | for (int a = 0; a < 2; a++)  |
| 31 | {  |
| 32 | float dot = tAbs(d * Axes[a]);  |
| 33 | if (dot > Extents.E[a])  |
| 34 | return false;  |
| 35 | }  |
| 36 |   |
| 37 | return true;  |
| 38 | }  |
| 39 |   |
| 40 |   |
| 41 | void tMath::tABox::Transform(const tMatrix4& t)  |
| 42 | {  |
| 43 | // Transform the 8 box points to the new space and grow a new box around them.  |
| 44 | tABox box;  |
| 45 | box.AddPoint( (t * tVector4(Min.x, Min.y, Min.z, 1.0f)).GetCartesian() );  |
| 46 | box.AddPoint( (t * tVector4(Max.x, Min.y, Min.z, 1.0f)).GetCartesian() );  |
| 47 | box.AddPoint( (t * tVector4(Min.x, Max.y, Min.z, 1.0f)).GetCartesian() );  |
| 48 | box.AddPoint( (t * tVector4(Max.x, Max.y, Min.z, 1.0f)).GetCartesian() );  |
| 49 | box.AddPoint( (t * tVector4(Min.x, Min.y, Max.z, 1.0f)).GetCartesian() );  |
| 50 | box.AddPoint( (t * tVector4(Max.x, Min.y, Max.z, 1.0f)).GetCartesian() );  |
| 51 | box.AddPoint( (t * tVector4(Min.x, Max.y, Max.z, 1.0f)).GetCartesian() );  |
| 52 | box.AddPoint( (t * tVector4(Max.x, Max.y, Max.z, 1.0f)).GetCartesian() );  |
| 53 |   |
| 54 | *this = box;  |
| 55 | }  |
| 56 |   |
| 57 |   |
| 58 | bool tMath::tOBox::IsInside(const tVector3& point) const  |
| 59 | {  |
| 60 | tVector3 d = point - Center;  |
| 61 | for (int a = 0; a < 3; a++)  |
| 62 | {  |
| 63 | float dot = tAbs(d * Axes[a]);  |
| 64 | if (dot > Extents.E[a])  |
| 65 | return false;  |
| 66 | }  |
| 67 |   |
| 68 | return true;  |
| 69 | }  |
| 70 |   |
| 71 |   |
| 72 | void tMath::tPlane::ComputeOrthogonalBasisVectors(tVector3& u, tVector3& v) const  |
| 73 | {  |
| 74 | // The algorithm is 'householder orthogonalization' as described here:  |
| 75 | // http://math.stackexchange.com/questions/64430/find-extra-arbitrary-two-points-for-a-plane-given-the-normal-and-a-point-that-l  |
| 76 | tVector3 n = Normal;  |
| 77 | n.Normalize();  |
| 78 |   |
| 79 | // Compute the 'mirror' vector w = (nx+1,ny,nz).  |
| 80 | tVector3 w = n;  |
| 81 | w.x += 1.0f;  |
| 82 |   |
| 83 | // Compute the 3x3 Householder matrix H = I - 2(wwT/wTw) where T means transpose.  |
| 84 | tMatrix4 wwT = w.MulByTranspose(w);  |
| 85 | float wTw = w*w;  |
| 86 | tMatrix4 H = tMatrix4::identity - 2.0f*(wwT/wTw);  |
| 87 |   |
| 88 | // Row1 of H will be a unit vector parallel to n. Row 2 and 3 will be unit vectors orthogonal to n and each other.  |
| 89 | // We transpose to get the rows out easily.  |
| 90 | H.Transpose();  |
| 91 | u = H.C2;  |
| 92 | v = H.C3;  |
| 93 | }  |
| 94 |   |
| 95 |   |
| 96 | void tMath::tFrustum::Set(const tMatrix4& mat)  |
| 97 | {   |
| 98 | // We put the matrix in row major format so we can do the trick described  |
| 99 | // in Akenine-Moller&Haines, Real-Time Rendering, 2nd Ed., pp.613-614.  |
| 100 | tMatrix4 m(mat);  |
| 101 | m.Transpose();  |
| 102 | tVector4 t;  |
| 103 |   |
| 104 | tSub(t, m.C4, m.C1); Planes[Plane_Right].Set(t);  |
| 105 | tAdd(t, m.C4, m.C1); Planes[Plane_Left].Set(t);  |
| 106 | tSub(t, m.C4, m.C2); Planes[Plane_Top].Set(t);  |
| 107 | tAdd(t, m.C4, m.C2); Planes[Plane_Bottom].Set(t);  |
| 108 | tSub(t, m.C4, m.C3); Planes[Plane_Far].Set(t);  |
| 109 | tAdd(t, m.C4, m.C3); Planes[Plane_Near].Set(t);  |
| 110 |   |
| 111 | for (int p = 0; p < Plane_NumPlanes; p++)  |
| 112 | Planes[p].Normalize();  |
| 113 | }  |
| 114 |   |
| 115 |   |
| 116 | bool tMath::tComputeSmallEnclosingSphere(tSphere& sphere, const tVector3* points, int numPoints, float minRadius)  |
| 117 | {  |
| 118 | if (!points || (numPoints <= 0))  |
| 119 | return false;  |
| 120 |   |
| 121 | if (minRadius < Epsilon)  |
| 122 | minRadius = Epsilon;  |
| 123 |   |
| 124 | float& radius = sphere.Radius;  |
| 125 | tVector3& center = sphere.Center;  |
| 126 |   |
| 127 | radius = minRadius;  |
| 128 | center = points[0];  |
| 129 | if (numPoints == 1)  |
| 130 | return true;  |
| 131 |   |
| 132 | for (int t = 0; t < 2; t++)  |
| 133 | {  |
| 134 | for (int p = 0; p < numPoints; p++)  |
| 135 | {  |
| 136 | float distSq = (points[p] - center).LengthSq();  |
| 137 | float radSq = radius*radius;  |
| 138 | if (distSq > radSq)  |
| 139 | {  |
| 140 | float dist = tSqrt(distSq);  |
| 141 | float param = dist / radius;  |
| 142 | float paramInv = 1.0f/param;  |
| 143 | float paramInvSq = paramInv*paramInv;  |
| 144 | float onePlus = 1.0f + paramInvSq;  |
| 145 | float oneMinus = 1.0f - paramInvSq;  |
| 146 |   |
| 147 | radius = 0.5f * (param + paramInv) * radius;  |
| 148 | center = (onePlus*center + oneMinus*points[p]) / 2.0f;  |
| 149 | }  |
| 150 | }  |
| 151 | }  |
| 152 |   |
| 153 | for (int p = 0; p < numPoints; p++)  |
| 154 | {  |
| 155 | tVector3 diff = points[p] - center;  |
| 156 | float distSq = diff.LengthSq();  |
| 157 | float radSq = radius*radius;  |
| 158 | if (distSq > radSq)  |
| 159 | {  |
| 160 | float dist = tSqrt(distSq);  |
| 161 | radius = (radius + dist) / 2.0f;  |
| 162 | center += diff * (dist - radius) / dist;  |
| 163 | }  |
| 164 | }  |
| 165 |   |
| 166 | return true;  |
| 167 | }  |
| 168 |   |
| 169 |   |
| 170 | bool tMath::tComputeSmallEnclosingSphere_Unstable(tSphere& sphere, const tVector3* points, int numPoints)  |
| 171 | {  |
| 172 | if (!points || (numPoints <= 0))  |
| 173 | return false;  |
| 174 |   |
| 175 | float& radius = sphere.Radius;  |
| 176 | tVector3& center = sphere.Center;  |
| 177 | if (numPoints == 1)  |
| 178 | {  |
| 179 | radius = 0.0f;  |
| 180 | center = points[0];  |
| 181 | return true;  |
| 182 | }  |
| 183 |   |
| 184 | tVector3 xmin(PosInfinity, PosInfinity, PosInfinity);  |
| 185 | tVector3 xmax(NegInfinity, NegInfinity, NegInfinity);  |
| 186 | tVector3 ymin(PosInfinity, PosInfinity, PosInfinity);  |
| 187 | tVector3 ymax(NegInfinity, NegInfinity, NegInfinity);  |
| 188 | tVector3 zmin(PosInfinity, PosInfinity, PosInfinity);  |
| 189 | tVector3 zmax(NegInfinity, NegInfinity, NegInfinity);  |
| 190 | for (int p = 0; p < numPoints; p++)  |
| 191 | {  |
| 192 | const tVector3& point = points[p];  |
| 193 | if (xmin.x > point.x)  |
| 194 | xmin = point;  |
| 195 |   |
| 196 | if (xmax.x < point.x)  |
| 197 | xmax = point;  |
| 198 |   |
| 199 | if (ymin.y > point.y)  |
| 200 | ymin = point;  |
| 201 |   |
| 202 | if (ymax.y < point.y)  |
| 203 | ymax = point;  |
| 204 |   |
| 205 | if (zmin.z > point.z)  |
| 206 | zmin = point;  |
| 207 |   |
| 208 | if (zmax.z < point.z)  |
| 209 | zmax = point;  |
| 210 | }  |
| 211 |   |
| 212 | // Span the distance between min and max squared.  |
| 213 | float xspan = (xmax - xmin).LengthSq();  |
| 214 | float yspan = (ymax - ymin).LengthSq();  |
| 215 | float zspan = (zmax - zmin).LengthSq();  |
| 216 |   |
| 217 | // Find maximally separated pair.  |
| 218 | tVector3 diam1(xmin);  |
| 219 | tVector3 diam2(xmax);  |
| 220 | float maxspan = xspan;  |
| 221 |   |
| 222 | if (yspan > maxspan)  |
| 223 | {  |
| 224 | maxspan = yspan;  |
| 225 | diam1 = ymin;  |
| 226 | diam2 = ymax;  |
| 227 | }  |
| 228 |   |
| 229 | if (zspan > maxspan)  |
| 230 | {  |
| 231 | diam1 = zmin;  |
| 232 | diam2 = zmax;  |
| 233 | }  |
| 234 |   |
| 235 | // Calculate initial center.  |
| 236 | center.Set( (diam1.x+diam2.x)*0.5f, (diam1.y+diam2.y)*0.5f, (diam1.z+diam2.z)*0.5f );  |
| 237 |   |
| 238 | // Calculate initial radius.  |
| 239 | tVector3 radVec(diam2.x - center.x, diam2.y - center.y, diam2.z - center.z);  |
| 240 | float radSq = radVec.LengthSq();  |
| 241 | radius = tSqrt(radSq);  |
| 242 |   |
| 243 | // Second pass. Increment current sphere.  |
| 244 | for (int p = 0; p < numPoints; p++)  |
| 245 | {  |
| 246 | const tVector3& point = points[p];  |
| 247 | tVector3 diff = point - center;  |
| 248 | float distSq = diff.LengthSq();  |
| 249 |   |
| 250 | // DistSq is guaranteed to be > 0 so the divide is safe.  |
| 251 | if (distSq > radSq)  |
| 252 | {  |
| 253 | float dist = tSqrt(distSq);  |
| 254 | radius = (radius + dist) / 2.0f;  |
| 255 | float diff = dist - radius;  |
| 256 | center = (center*radius + point*diff) / dist;  |
| 257 | }  |
| 258 | }  |
| 259 |   |
| 260 | return true;  |
| 261 | }  |
| 262 |   |
| 263 |   |
| 264 | float tMath::tDistanceToLine(const tVector3& p, const tLine& l)  |
| 265 | {  |
| 266 | tVector3 u = l.B - l.A;  |
| 267 | u.Normalize();  |
| 268 | tVector3 w = p - l.A;  |
| 269 | u %= w; // Cross product.  |
| 270 |   |
| 271 | return u.Length();  |
| 272 | }  |
| 273 |   |
| 274 |   |
| 275 | tMath::tIntersectResult tMath::IntersectFindLineLineHelper(const tLine2& a, const tLine2& b, float& ua, float& ub)  |
| 276 | {  |
| 277 | // Based on http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/  |
| 278 | float x4mx3 = b.B.x - b.A.x;  |
| 279 | float y1my3 = a.A.y - b.A.y;  |
| 280 | float y4my3 = b.B.y - b.A.y;  |
| 281 | float x1mx3 = a.A.x - b.A.x;  |
| 282 | float x2mx1 = a.B.x - a.A.x;  |
| 283 | float y2my1 = a.B.y - a.A.y;  |
| 284 |   |
| 285 | float d = y4my3*x2mx1 - x4mx3*y2my1;  |
| 286 | float na = x4mx3*y1my3 - y4my3*x1mx3;  |
| 287 | float nb = x2mx1*y1my3 - y2my1*x1mx3;  |
| 288 | if (d == 0.0f)  |
| 289 | {  |
| 290 | // We're parallel, possibly coincident.  |
| 291 | if ((na == 0.0f) || (nb == 0.0f))  |
| 292 | return tIntersectResult::Coincident;  |
| 293 | else  |
| 294 | return tIntersectResult::Parallel;  |
| 295 | }  |
| 296 |   |
| 297 | ua = na/d;  |
| 298 | ub = nb/d;  |
| 299 | return tIntersectResult::Point;  |
| 300 | }  |
| 301 |   |
| 302 |   |
| 303 | tMath::tIntersectResult tMath::tIntersectFindLineLine(const tLine2& a, const tLine2& b, tVector2& i)  |
| 304 | {  |
| 305 | float ua, ub;  |
| 306 | tIntersectResult r = IntersectFindLineLineHelper(a, b, ua, ub);  |
| 307 | if (r != tIntersectResult::Point)  |
| 308 | return r;  |
| 309 |   |
| 310 | i = a.A + ua*(a.B - a.A);  |
| 311 | return tIntersectResult::Point;  |
| 312 | }  |
| 313 |   |
| 314 |   |
| 315 | tMath::tIntersectResult tMath::tIntersectFindSegSeg(const tLineSeg2& a, const tLineSeg2& b, tVector2& i)  |
| 316 | {  |
| 317 | float ua, ub;  |
| 318 | tIntersectResult r = IntersectFindLineLineHelper(a, b, ua, ub);  |
| 319 | if (r != tIntersectResult::Point)  |
| 320 | return r;  |
| 321 |   |
| 322 | if (tInRange(ua, 0.0f, 1.0f) && tInRange(ub, 0.0f, 1.0f))  |
| 323 | {  |
| 324 | i = a.A + ua*(a.B - a.A);  |
| 325 | return tIntersectResult::Point;  |
| 326 | }  |
| 327 |   |
| 328 | return tIntersectResult::None;  |
| 329 | }  |
| 330 |   |
| 331 |   |
| 332 | tMath::tIntersectResult tMath::tIntersectFindRaySeg(const tRay2& r, const tLineSeg2& b, tVector2& i)  |
| 333 | {  |
| 334 | tLine2 a(r.Start, r.Start+r.Dir);  |
| 335 |   |
| 336 | float ua, ub;  |
| 337 | tIntersectResult res = IntersectFindLineLineHelper(a, b, ua, ub);  |
| 338 | if (res != tIntersectResult::Point)  |
| 339 | return res;  |
| 340 |   |
| 341 | if ((ua >= 0.0f) && tInRange(ub, 0.0f, 1.0f))  |
| 342 | {  |
| 343 | i = a.A + ua*(a.B - a.A);  |
| 344 | return tIntersectResult::Point;  |
| 345 | }  |
| 346 |   |
| 347 | return tIntersectResult::None;  |
| 348 | }  |
| 349 |   |
| 350 |   |
| 351 | int tMath::tIntersectFindRayRect(const tRay2& r, const tARect2& b, tVector2 ia[2], uint32* sides)  |
| 352 | {  |
| 353 | int numIntersections = 0;  |
| 354 |   |
| 355 | // The box is made of 4 segments that we test in turn.  |
| 356 | tVector2 tl(b.Min.x, b.Max.y);  |
| 357 | tVector2 br(b.Max.x, b.Min.y);  |
| 358 | tLineSeg2 seg;  |
| 359 | tVector2 i;  |
| 360 | if (sides)  |
| 361 | *sides = 0;  |
| 362 |   |
| 363 | // Bottom segment.  |
| 364 | seg.A = b.Min;  |
| 365 | seg.B = br;  |
| 366 | if (tIntersectFindRaySeg(r, seg, i) == tIntersectResult::Point)  |
| 367 | {  |
| 368 | ia[numIntersections++] = i;  |
| 369 | if (sides)  |
| 370 | *sides |= tARect2::Side_Bottom;  |
| 371 | }  |
| 372 |   |
| 373 | // Right segment.  |
| 374 | seg.A = br;  |
| 375 | seg.B = b.Max;  |
| 376 | if (tIntersectFindRaySeg(r, seg, i) == tIntersectResult::Point)  |
| 377 | {  |
| 378 | ia[numIntersections++] = i;  |
| 379 | if (sides)  |
| 380 | *sides |= tARect2::Side_Right;  |
| 381 | }  |
| 382 | if (numIntersections == 2)  |
| 383 | return numIntersections;  |
| 384 |   |
| 385 | // Top segment.  |
| 386 | seg.A = b.Max;  |
| 387 | seg.B = tl;  |
| 388 | if (tIntersectFindRaySeg(r, seg, i) == tIntersectResult::Point)  |
| 389 | {  |
| 390 | ia[numIntersections++] = i;  |
| 391 | if (sides)  |
| 392 | *sides |= tARect2::Side_Top;  |
| 393 | }  |
| 394 | if (numIntersections == 2)  |
| 395 | return numIntersections;  |
| 396 |   |
| 397 | // Left segment.  |
| 398 | seg.A = tl;  |
| 399 | seg.B = b.Min;  |
| 400 | if (tIntersectFindRaySeg(r, seg, i) == tIntersectResult::Point)  |
| 401 | {  |
| 402 | ia[numIntersections++] = i;  |
| 403 | if (sides)  |
| 404 | *sides |= tARect2::Side_Left;  |
| 405 | }  |
| 406 |   |
| 407 | return numIntersections;  |
| 408 | }  |
| 409 |   |
| 410 |   |
| 411 | bool tMath::tIntersectFindRaySphere(float& t, const tRay& ray, const tSphere& sphere)  |
| 412 | {  |
| 413 | const tVector3& p = ray.Start;  |
| 414 | const tVector3& d = ray.Dir;  |
| 415 | const tVector3& c = sphere.Center;  |
| 416 | const float& r = sphere.Radius;  |
| 417 |   |
| 418 | // rayDir must have length 1. Solution is quadratic equation with A=1 and B, C as below.  |
| 419 | float B = 2.0f*( d.x*(p.x-c.x) + d.y*(p.y-c.y) + d.z*(p.z-c.z) );  |
| 420 | float C = (p.x-c.x)*(p.x-c.x) + (p.y-c.y)*(p.y-c.y) + (p.z-c.z)*(p.z-c.z) - r*r;  |
| 421 |   |
| 422 | float discriminant = B*B - 4.0f*C;  |
| 423 | if (discriminant < 0.0f)  |
| 424 | return false;  |
| 425 |   |
| 426 | float root = tSqrt(discriminant);  |
| 427 |   |
| 428 | t = (-B - root)/2.0f;  |
| 429 |   |
| 430 | // May need the other root.  |
| 431 | if (t < 0.0f)  |
| 432 | t = (-B + root)/2.0f;  |
| 433 |   |
| 434 | if (t < 0.0f)  |
| 435 | // The sphere is behind us.  |
| 436 | return false;  |
| 437 |   |
| 438 | // The intersection = p + d*t.  |
| 439 | // t0, t1 = (- B + (B^2 - 4*C)^1/2) / 2 where t0 is for (-) and t1 is for (+).  |
| 440 | // If the discriminant is < 0.0 then there is no real root and no intersection. If there is a real root  |
| 441 | // (discriminant > = 0.0) then the smaller positive root is the closest intersection point. We compute t0 and if it  |
| 442 | // is positive we are done. If it is negative we compute t1. The intersection point is given by:   |
| 443 | // Ri = [xi, yi, zi] = [x0 + xd * ti , y0 + yd * ti, z0 + zd * ti]  |
| 444 | return true;  |
| 445 | }  |
| 446 |   |
| 447 |   |
| 448 | bool tMath::tIntersectTestLineSegSphere(const tLineSeg& segmentAB, const tSphere& sphere)  |
| 449 | {  |
| 450 | tRay rayAB(segmentAB);  |
| 451 | tLineSeg segmentBA(segmentAB.B, segmentAB.A);  |
| 452 | tRay rayBA(segmentBA);  |
| 453 |   |
| 454 | float u, v;  |
| 455 | if (tIntersectFindRaySphere(u, rayAB, sphere) && tIntersectFindRaySphere(v, rayBA, sphere))  |
| 456 | return true;  |
| 457 | else  |
| 458 | return false;  |
| 459 | }  |
| 460 |   |
| 461 |   |
| 462 | bool tMath::tIntersectFindRayEllipse(float& t, const tRay2& ray, const tEllipse2& ellipse)  |
| 463 | {  |
| 464 | float r1 = ellipse.RadiusX;  |
| 465 | float r2 = ellipse.RadiusY;  |
| 466 | tAssert(r1 && r2);  |
| 467 |   |
| 468 | float dx = ray.Dir.x;  |
| 469 | float dy = ray.Dir.y;  |
| 470 | tAssert(dx || dy);  |
| 471 |   |
| 472 | float discriminant = 1.0f/( (dx*dx/(r1*r1)) + (dy*dy/(r2*r2)) );  |
| 473 | if (discriminant < 0.0f)  |
| 474 | return false;  |
| 475 |   |
| 476 | t = tSqrt(discriminant);  |
| 477 | return true;  |
| 478 | }  |
| 479 |   |
| 480 |   |
| 481 | bool tMath::tIntersectTestRayTriangle(const tRay& ray, const tTriangle& tri)  |
| 482 | {  |
| 483 | // A reconditioned version of the Segura-Feito method.  |
| 484 | tVector3 a = tri.A - ray.Start;  |
| 485 | tVector3 b = tri.B - ray.Start;  |
| 486 | tVector3 c = tri.C - ray.Start;  |
| 487 |   |
| 488 | tVector3 t;  |
| 489 | tCross(t, a, ray.Dir);  |
| 490 | if (c*t > 0.0f)  |
| 491 | return false;  |
| 492 |   |
| 493 | if (b*t < 0.0f)  |
| 494 | return false;  |
| 495 |   |
| 496 | tCross(t, b, ray.Dir);  |
| 497 | if (c*t < 0.0f)  |
| 498 | return false;  |
| 499 |   |
| 500 | return true;  |
| 501 | }  |
| 502 |   |
| 503 |   |
| 504 | bool tMath::tIntersectTestFrustumSphere(const tFrustum& f, const tSphere& s)  |
| 505 | {  |
| 506 | for (int p = 0; p < int(tFrustum::Plane_NumPlanes); p++)  |
| 507 | {  |
| 508 | // Use the sphere's center in the normalized plane equation to get the projected distance to plane.  |
| 509 | if (s.Center * f.Planes[p].Normal + f.Planes[p].Distance < -s.Radius)  |
| 510 | return false;  |
| 511 | }  |
| 512 |   |
| 513 | return true;  |
| 514 | }  |
| 515 | |