1 | // tLinearAlgebra.cpp |
2 | // |
3 | // POD types for Vectors, Matrices and a function library to manipulate them. Includes geometrical transformations, |
4 | // cross/dot products, inversion functions, projections, normalization etc. These POD types are used as superclasses |
5 | // for the more object-oriented and complete derived types. eg. tVector3 derives from the POD type tVec2 found here. |
6 | // |
7 | // Copyright (c) 2004-2006, 2015, 2017 Tristan Grimmer. |
8 | // Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby |
9 | // granted, provided that the above copyright notice and this permission notice appear in all copies. |
10 | // |
11 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL |
12 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, |
13 | // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN |
14 | // AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR |
15 | // PERFORMANCE OF THIS SOFTWARE. |
16 | |
17 | #include "Math/tLinearAlgebra.h" |
18 | #include "Math/tVector2.h" |
19 | #include "Math/tVector3.h" |
20 | #include "Math/tVector4.h" |
21 | #include "Math/tQuaternion.h" |
22 | #include "Math/tMatrix2.h" |
23 | #include "Math/tMatrix4.h" |
24 | |
25 | |
26 | const tMath::tVector2 tMath::tVector2::zero = { 0.0f, 0.0f }; |
27 | const tMath::tVector2 tMath::tVector2::i = { 1.0f, 0.0f }; |
28 | const tMath::tVector2 tMath::tVector2::j = { 0.0f, 1.0f }; |
29 | const tMath::tVector3 tMath::tVector3::zero = { 0.0f, 0.0f, 0.0f }; |
30 | const tMath::tVector3 tMath::tVector3::i = { 1.0f, 0.0f, 0.0f }; |
31 | const tMath::tVector3 tMath::tVector3::j = { 0.0f, 1.0f, 0.0f }; |
32 | const tMath::tVector3 tMath::tVector3::k = { 0.0f, 0.0f, 1.0f }; |
33 | const tMath::tVector4 tMath::tVector4::zero = { 0.0f, 0.0f, 0.0f, 0.0f }; |
34 | const tMath::tVector4 tMath::tVector4::i = { 1.0f, 0.0f, 0.0f, 1.0f }; |
35 | const tMath::tVector4 tMath::tVector4::j = { 0.0f, 1.0f, 0.0f, 1.0f }; |
36 | const tMath::tVector4 tMath::tVector4::k = { 0.0f, 0.0f, 1.0f, 1.0f }; |
37 | const tMath::tVector4 tMath::tVector4::origin = { 0.0f, 0.0f, 0.0f, 1.0f }; |
38 | const tMath::tQuaternion tMath::tQuaternion::zero = { 0.0f, 0.0f, 0.0f, 0.0f }; |
39 | const tMath::tQuaternion tMath::tQuaternion::unit = { 0.0f, 0.0f, 0.0f, 1.0f }; |
40 | const tMath::tMatrix2 tMath::tMatrix2::zero = { 0.0f, 0.0f, 0.0f, 0.0f }; |
41 | const tMath::tMatrix2 tMath::tMatrix2::identity = { 1.0f, 0.0f, 0.0f, 1.0f }; |
42 | const tMath::tMatrix4 tMath::tMatrix4::zero = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; |
43 | const tMath::tMatrix4 tMath::tMatrix4::identity = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; |
44 | |
45 | |
46 | void tMath::tSet(tQuat& d, const tMat4& m) |
47 | { |
48 | float trace = m.E[0] + m.E[5] + m.E[10]; |
49 | |
50 | // The 0.0 here implies a decision that when w < 0.5 we consider rounding errors to be a potential issue. |
51 | if (trace > 0.0f) |
52 | { |
53 | // w >= 0.5. Negligible error. |
54 | float s = tSqrt(trace + 1.0f); |
55 | d.w = 0.5f * s; |
56 | s = 0.5f / s; |
57 | d.x = (m.E[6] - m.E[9]) * s; |
58 | d.y = (m.E[8] - m.E[2]) * s; |
59 | d.z = (m.E[1] - m.E[4]) * s; |
60 | } |
61 | else |
62 | { |
63 | // w < 0.5. Find the largest of the x, y, z components. The remaining components get computed from this |
64 | // to avoid rounding errors. |
65 | if ((m.E[0] > m.E[5]) && (m.E[0] > m.E[10])) |
66 | { |
67 | float s = tSqrt((m.E[0] - (m.E[5] + m.E[10])) + 1.0f); |
68 | d.x = 0.5f * s; |
69 | s = 0.5f / s; |
70 | d.y = (m.E[4] + m.E[1]) * s; |
71 | d.z = (m.E[2] + m.E[8]) * s; |
72 | d.w = (m.E[6] - m.E[9]) * s; |
73 | } |
74 | else if (m.E[5] > m.E[10]) |
75 | { |
76 | float s = tSqrt((m.E[5] - (m.E[10] + m.E[0])) + 1.0f); |
77 | d.y = 0.5f * s; |
78 | s = 0.5f / s; |
79 | d.z = (m.E[9] + m.E[6]) * s; |
80 | d.x = (m.E[4] + m.E[1]) * s; |
81 | d.w = (m.E[8] - m.E[2]) * s; |
82 | } |
83 | else |
84 | { |
85 | float s = tSqrt((m.E[10] - (m.E[0] + m.E[5])) + 1.0f); |
86 | d.z = 0.5f * s; |
87 | s = 0.5f / s; |
88 | d.x = (m.E[2] + m.E[8]) * s; |
89 | d.y = (m.E[9] + m.E[6]) * s; |
90 | d.w = (m.E[1] - m.E[4]) * s; |
91 | } |
92 | } |
93 | } |
94 | |
95 | |
96 | void tMath::tSet(tQuat& d, const tVec3& axis, float angle) |
97 | { |
98 | d.r = tCos(angle / 2.0f); |
99 | float s = tSin(angle / 2.0f); |
100 | tSet(d.v, axis.x * s, axis.y * s, axis.z * s); |
101 | } |
102 | |
103 | |
104 | void tMath::tSet(tMat4& d, const tQuat& s) |
105 | { |
106 | float yy = s.y * s.y; |
107 | float xx = s.x * s.x; |
108 | float zz = s.z * s.z; |
109 | float xy = s.x * s.y; |
110 | float yz = s.y * s.z; |
111 | float wz = s.w * s.z; |
112 | float xz = s.x * s.z; |
113 | float wx = s.w * s.x; |
114 | float wy = s.w * s.y; |
115 | |
116 | d.E[0] = 1.0f - 2.0f*(yy + zz); |
117 | d.E[1] = 2.0f*(xy + wz); |
118 | d.E[2] = 2.0f*(xz - wy); |
119 | d.E[3] = 0.0f; |
120 | |
121 | d.E[4] = 2.0f*(xy - wz); |
122 | d.E[5] = 1.0f - 2.0f*(xx + zz); |
123 | d.E[6] = 2.0f*(yz + wx); |
124 | d.E[7] = 0.0f; |
125 | |
126 | d.E[8] = 2.0f*(xz + wy); |
127 | d.E[9] = 2.0f*(yz - wx); |
128 | d.E[10] = 1.0f - 2.0f*(xx + yy); |
129 | d.E[11] = 0.0f; |
130 | |
131 | d.E[12] = 0.0f; |
132 | d.E[13] = 0.0f; |
133 | d.E[14] = 0.0f; |
134 | d.E[15] = 1.0f; |
135 | } |
136 | |
137 | |
138 | void tMath::tGet(tVec3& axis, float& angle, const tQuat& q) |
139 | { |
140 | angle = 2.0f * tArcCos(q.w); // Angle E [0, 2Pi] |
141 | float s = tSqrt(1.0f - q.w*q.w); // Assumes normalised so Abs(w) < 1, w*w E [0,1], and 1-w*w > 0. |
142 | if (s > 0.00001f) // Avoid infinity. |
143 | tSet(axis, q.x/s, q.y/s, q.z/s); |
144 | else |
145 | tSet(axis, 1.0f, 0.0f, 0.0f); // The axis direction doesn't matter so (1,0,0) is fine. |
146 | |
147 | if (angle > Pi) |
148 | { |
149 | // To return an angle E [0,Pi] we may have to reverse the axis direction. |
150 | tNeg(axis); |
151 | angle = TwoPi - angle; |
152 | } |
153 | } |
154 | |
155 | |
156 | void tMath::tMul(tVec3& d, const tMat4& a, const tVec3& b) |
157 | { |
158 | // It would be nice to have an intrinsics-based implementation instead of this inline assembly. |
159 | // Unfortunately inline asm is not supported on architectures like x64. |
160 | float x = b.x*a.a11 + b.y*a.a12 + b.z*a.a13 + a.a14; |
161 | float y = b.x*a.a21 + b.y*a.a22 + b.z*a.a23 + a.a24; |
162 | float z = b.x*a.a31 + b.y*a.a32 + b.z*a.a33 + a.a34; |
163 | tSet(d, x, y, z); |
164 | } |
165 | |
166 | |
167 | void tMath::tMul(tVec4& d, const tMat4& a, const tVec4& b) |
168 | { |
169 | // @todo Optimize this using intrinsics or SSE. |
170 | float x = b.x*a.a11 + b.y*a.a12 + b.z*a.a13 + b.w*a.a14; |
171 | float y = b.x*a.a21 + b.y*a.a22 + b.z*a.a23 + b.w*a.a24; |
172 | float z = b.x*a.a31 + b.y*a.a32 + b.z*a.a33 + b.w*a.a34; |
173 | float w = b.x*a.a41 + b.y*a.a42 + b.z*a.a43 + b.w*a.a44; |
174 | |
175 | tSet(d, x, y, z, w); |
176 | } |
177 | |
178 | |
179 | void tMath::tMul(tMat4& d, const tMat4& a, const tMat4& b) |
180 | { |
181 | for (int i = 0; i < 4; ++i) |
182 | { |
183 | float a0i = a.A[0][i]; |
184 | float a1i = a.A[1][i]; |
185 | float a2i = a.A[2][i]; |
186 | float a3i = a.A[3][i]; |
187 | |
188 | d.A[0][i] = (a0i * b.a11) + (a1i * b.a21) + (a2i * b.a31) + (a3i * b.a41); |
189 | d.A[1][i] = (a0i * b.a12) + (a1i * b.a22) + (a2i * b.a32) + (a3i * b.a42); |
190 | d.A[2][i] = (a0i * b.a13) + (a1i * b.a23) + (a2i * b.a33) + (a3i * b.a43); |
191 | d.A[3][i] = (a0i * b.a14) + (a1i * b.a24) + (a2i * b.a34) + (a3i * b.a44); |
192 | } |
193 | } |
194 | |
195 | |
196 | void tMath::tSlerp(tQuat& d, const tQuat& a, const tQuat& b, float t) |
197 | { |
198 | if (t >= 1.0f) |
199 | { |
200 | d = b; |
201 | return; |
202 | } |
203 | |
204 | if (t <= 0.0f) |
205 | { |
206 | d = a; |
207 | return; |
208 | } |
209 | |
210 | float cosTheta = tDot(a, b); |
211 | if (cosTheta < 0.0f) |
212 | { |
213 | cosTheta = -cosTheta; |
214 | tNeg(d, b); |
215 | } |
216 | else |
217 | { |
218 | d = b; |
219 | } |
220 | |
221 | const float delta = 0.98f; |
222 | float facA = 1.0f - t; |
223 | float facB = t; |
224 | if (cosTheta < delta) |
225 | { |
226 | float theta = tArcCos(cosTheta); |
227 | float sinTheta = tSin(theta); |
228 | float den = 1.0f / sinTheta; |
229 | |
230 | facA = den * tSin((1.0f - t) * theta); |
231 | facB = den * tSin(t * theta); |
232 | } |
233 | |
234 | d.x = facA*a.x + facB*d.x; |
235 | d.y = facA*a.y + facB*d.y; |
236 | d.z = facA*a.z + facB*d.z; |
237 | d.w = facA*a.w + facB*d.w; |
238 | } |
239 | |
240 | |
241 | void tMath::tSlerp(tQuat& d, const tQuat& a, const tQuat& bb, float t, tOrientationPath path) |
242 | { |
243 | if (t >= 1.0f) |
244 | { |
245 | d = bb; |
246 | return; |
247 | } |
248 | |
249 | if (t <= 0.0f) |
250 | { |
251 | d = a; |
252 | return; |
253 | } |
254 | |
255 | tQuat b; |
256 | tSet(b, bb); |
257 | float cosTheta = tDot(a, b); |
258 | |
259 | if |
260 | ( |
261 | ((path == tOrientationPath::Shortest) && (cosTheta < 0.0f)) || // Shortest spherical path. |
262 | ((path == tOrientationPath::Longest) && (cosTheta > 0.0f)) || // Longest spherical path. |
263 | ((path == tOrientationPath::Clockwise) && (a.w > b.w)) || // Clockwise spherical path. |
264 | ((path == tOrientationPath::CounterClockwise) && (a.w < b.w)) // Counterclockwise spherical path. |
265 | ) |
266 | { |
267 | cosTheta = -cosTheta; |
268 | tNeg(b); |
269 | } |
270 | |
271 | // We need to separate out the top of the cos curve (where it's flat and the sin goes to 0). |
272 | // In the same way that sin(x) ~= x for small x, cos(x) ~= 1 for small x. |
273 | float thresh = 0.98f; |
274 | float facA = 1.0f - t; |
275 | float facB = t; |
276 | if (cosTheta < thresh) |
277 | { |
278 | float theta = tArcCos(cosTheta); |
279 | float sinTheta = tSin(theta); |
280 | float inv = 1.0f / sinTheta; |
281 | facA = inv * tSin((1.0f - t) * theta); |
282 | facB = inv * tSin(t * theta); |
283 | } |
284 | |
285 | d.x = facA*a.x + facB*b.x; |
286 | d.y = facA*a.y + facB*b.y; |
287 | d.z = facA*a.z + facB*b.z; |
288 | d.w = facA*a.w + facB*b.w; |
289 | } |
290 | |
291 | |
292 | void tMath::tNlerp(tQuat& d, const tQuat& a, const tQuat& bb, float t, tOrientationPath path) |
293 | { |
294 | if (t >= 1.0f) |
295 | { |
296 | d = bb; |
297 | return; |
298 | } |
299 | |
300 | if (t <= 0.0f) |
301 | { |
302 | d = a; |
303 | return; |
304 | } |
305 | |
306 | tQuat b; |
307 | tSet(b, bb); |
308 | float cosTheta = tDot(a, b); |
309 | |
310 | if |
311 | ( |
312 | ((path == tOrientationPath::Shortest) && (cosTheta < 0.0f)) || // Shortest linear path. |
313 | ((path == tOrientationPath::Longest) && (cosTheta > 0.0f)) || // Longest linear path. |
314 | ((path == tOrientationPath::Clockwise) && (a.w > b.w)) || // Clockwise path. |
315 | ((path == tOrientationPath::CounterClockwise) && (a.w < b.w)) // Counterclockwise path. |
316 | ) |
317 | { |
318 | cosTheta = -cosTheta; |
319 | tNeg(b); |
320 | } |
321 | |
322 | float facA = 1.0f - t; |
323 | float facB = t; |
324 | d.x = facA*a.x + facB*b.x; |
325 | d.y = facA*a.y + facB*b.y; |
326 | d.z = facA*a.z + facB*b.z; |
327 | d.w = facA*a.w + facB*b.w; |
328 | tNormalize(d); |
329 | } |
330 | |
331 | |
332 | float tMath::tDeterminant(const tMat4& m) |
333 | { |
334 | return |
335 | m.A[0][0] * |
336 | ( |
337 | m.A[1][1] * (m.A[2][2] * m.A[3][3] - m.A[2][3] * m.A[3][2]) + |
338 | m.A[2][1] * (m.A[1][3] * m.A[3][2] - m.A[1][2] * m.A[3][3]) + |
339 | m.A[3][1] * (m.A[1][2] * m.A[2][3] - m.A[1][3] * m.A[2][2]) |
340 | ) - |
341 | m.A[1][0] * |
342 | ( |
343 | m.A[0][1] * (m.A[2][2] * m.A[3][3] - m.A[2][3] * m.A[3][2]) + |
344 | m.A[2][1] * (m.A[0][3] * m.A[3][2] - m.A[0][2] * m.A[3][3]) + |
345 | m.A[3][1] * (m.A[0][2] * m.A[2][3] - m.A[0][3] * m.A[2][2]) |
346 | ) + |
347 | m.A[2][0] * |
348 | ( |
349 | m.A[0][1] * (m.A[1][2] * m.A[3][3] - m.A[1][3] * m.A[3][2]) + |
350 | m.A[1][1] * (m.A[0][3] * m.A[3][2] - m.A[0][2] * m.A[3][3]) + |
351 | m.A[3][1] * (m.A[0][2] * m.A[1][3] - m.A[0][3] * m.A[1][2]) |
352 | ) - |
353 | m.A[3][0] * |
354 | ( |
355 | m.A[0][1] * (m.A[1][2] * m.A[2][3] - m.A[1][3] * m.A[2][2]) + |
356 | m.A[1][1] * (m.A[0][3] * m.A[2][2] - m.A[0][2] * m.A[2][3]) + |
357 | m.A[2][1] * (m.A[0][2] * m.A[1][3] - m.A[0][3] * m.A[1][2]) |
358 | ); |
359 | } |
360 | |
361 | |
362 | bool tMath::tInvert(tMat4& m) |
363 | { |
364 | #if defined(PLATFORM_WINDOWS) |
365 | if (tDeterminant(m) == 0.0f) |
366 | return false; |
367 | |
368 | // Naming: m for minor. de for determinant. t0 for temporary. r for row. |
369 | __m128 m1, m2, m3, m4, r1, r3, de; |
370 | __m128 r2 = _mm_setzero_ps(); |
371 | __m128 r4 = _mm_setzero_ps(); |
372 | __m128 t0 = _mm_setzero_ps(); |
373 | |
374 | // Cramer's rule used here (not Gaussian Elim). |
375 | t0 = _mm_loadh_pi(_mm_loadl_pi(t0, (__m64*)(m.E+ 0)), (__m64*)(m.E+ 4)); |
376 | r2 = _mm_loadh_pi(_mm_loadl_pi(r2, (__m64*)(m.E+ 8)), (__m64*)(m.E+12)); |
377 | r1 = _mm_shuffle_ps(t0, r2, 0x88); |
378 | r2 = _mm_shuffle_ps(r2, t0, 0xDD); |
379 | t0 = _mm_loadh_pi(_mm_loadl_pi(t0, (__m64*)(m.E+ 2)), (__m64*)(m.E+ 6)); |
380 | r4 = _mm_loadh_pi(_mm_loadl_pi(r4, (__m64*)(m.E+10)), (__m64*)(m.E+14)); |
381 | r3 = _mm_shuffle_ps(t0, r4, 0x88); |
382 | r4 = _mm_shuffle_ps(r4, t0, 0xDD); |
383 | t0 = _mm_mul_ps(r3, r4); |
384 | t0 = _mm_shuffle_ps(t0, t0, 0xB1); |
385 | m1 = _mm_mul_ps(r2, t0); |
386 | m2 = _mm_mul_ps(r1, t0); |
387 | t0 = _mm_shuffle_ps(t0, t0, 0x4E); |
388 | m1 = _mm_sub_ps(_mm_mul_ps(r2, t0), m1); |
389 | m2 = _mm_sub_ps(_mm_mul_ps(r1, t0), m2); |
390 | m2 = _mm_shuffle_ps(m2, m2, 0x4E); |
391 | t0 = _mm_mul_ps(r2, r3); |
392 | t0 = _mm_shuffle_ps(t0, t0, 0xB1); |
393 | m1 = _mm_add_ps(_mm_mul_ps(r4, t0), m1); |
394 | m4 = _mm_mul_ps(r1, t0); |
395 | t0 = _mm_shuffle_ps(t0, t0, 0x4E); |
396 | m1 = _mm_sub_ps(m1, _mm_mul_ps(r4, t0)); |
397 | m4 = _mm_sub_ps(_mm_mul_ps(r1, t0), m4); |
398 | m4 = _mm_shuffle_ps(m4, m4, 0x4E); |
399 | t0 = _mm_mul_ps(_mm_shuffle_ps(r2, r2, 0x4E), r4); |
400 | t0 = _mm_shuffle_ps(t0, t0, 0xB1); |
401 | r3 = _mm_shuffle_ps(r3, r3, 0x4E); |
402 | m1 = _mm_add_ps(_mm_mul_ps(r3, t0), m1); |
403 | m3 = _mm_mul_ps(r1, t0); |
404 | t0 = _mm_shuffle_ps(t0, t0, 0x4E); |
405 | m1 = _mm_sub_ps(m1, _mm_mul_ps(r3, t0)); |
406 | m3 = _mm_sub_ps(_mm_mul_ps(r1, t0), m3); |
407 | m3 = _mm_shuffle_ps(m3, m3, 0x4E); |
408 | t0 = _mm_mul_ps(r1, r2); |
409 | t0 = _mm_shuffle_ps(t0, t0, 0xB1); |
410 | m3 = _mm_add_ps(_mm_mul_ps(r4, t0), m3); |
411 | m4 = _mm_sub_ps(_mm_mul_ps(r3, t0), m4); |
412 | t0 = _mm_shuffle_ps(t0, t0, 0x4E); |
413 | m3 = _mm_sub_ps(_mm_mul_ps(r4, t0), m3); |
414 | m4 = _mm_sub_ps(m4, _mm_mul_ps(r3, t0)); |
415 | t0 = _mm_mul_ps(r1, r4); |
416 | t0 = _mm_shuffle_ps(t0, t0, 0xB1); |
417 | m2 = _mm_sub_ps(m2, _mm_mul_ps(r3, t0)); |
418 | m3 = _mm_add_ps(_mm_mul_ps(r2, t0), m3); |
419 | t0 = _mm_shuffle_ps(t0, t0, 0x4E); |
420 | m2 = _mm_add_ps(_mm_mul_ps(r3, t0), m2); |
421 | m3 = _mm_sub_ps(m3, _mm_mul_ps(r2, t0)); |
422 | t0 = _mm_mul_ps(r1, r3); |
423 | t0 = _mm_shuffle_ps(t0, t0, 0xB1); |
424 | m2 = _mm_add_ps(_mm_mul_ps(r4, t0), m2); |
425 | m4 = _mm_sub_ps(m4, _mm_mul_ps(r2, t0)); |
426 | t0 = _mm_shuffle_ps(t0, t0, 0x4E); |
427 | m2 = _mm_sub_ps(m2, _mm_mul_ps(r4, t0)); |
428 | m4 = _mm_add_ps(_mm_mul_ps(r2, t0), m4); |
429 | de = _mm_mul_ps(r1, m1); |
430 | de = _mm_add_ps(_mm_shuffle_ps(de, de, 0x4E), de); |
431 | de = _mm_add_ss(_mm_shuffle_ps(de, de, 0xB1), de); |
432 | t0 = _mm_rcp_ss(de); |
433 | de = _mm_sub_ss(_mm_add_ss(t0, t0), _mm_mul_ss(de, _mm_mul_ss(t0, t0))); |
434 | de = _mm_shuffle_ps(de, de, 0x00); |
435 | m1 = _mm_mul_ps(de, m1); |
436 | |
437 | // Assign the result. |
438 | _mm_storel_pi((__m64*)(m.E+ 0), m1); |
439 | _mm_storeh_pi((__m64*)(m.E+ 2), m1); |
440 | m2 = _mm_mul_ps(de, m2); |
441 | _mm_storel_pi((__m64*)(m.E+ 4), m2); |
442 | _mm_storeh_pi((__m64*)(m.E+ 6), m2); |
443 | m3 = _mm_mul_ps(de, m3); |
444 | _mm_storel_pi((__m64*)(m.E+ 8), m3); |
445 | _mm_storeh_pi((__m64*)(m.E+10), m3); |
446 | m4 = _mm_mul_ps(de, m4); |
447 | _mm_storel_pi((__m64*)(m.E+12), m4); |
448 | _mm_storeh_pi((__m64*)(m.E+14), m4); |
449 | return true; |
450 | |
451 | #else |
452 | tMat4 s; |
453 | tSet(s, m); |
454 | return tInvert(m, s); |
455 | |
456 | #endif |
457 | } |
458 | |
459 | |
460 | bool tMath::tInvert(tMat4& d, const tMat4& s) |
461 | { |
462 | #if defined(PLATFORM_WINDOWS) |
463 | tSet(d, s); |
464 | return tInvert(d); |
465 | |
466 | #else |
467 | tMat4 t; |
468 | tTranspose(t, s); |
469 | float prd[12]; |
470 | |
471 | // Calculate intermediate products for the first set of 8 cofactors. |
472 | prd[ 0] = t.E[10]*t.E[15]; prd[ 1] = t.E[11]*t.E[14]; prd[ 2] = t.E[ 9]*t.E[15]; prd[ 3] = t.E[11]*t.E[13]; |
473 | prd[ 4] = t.E[ 9]*t.E[14]; prd[ 5] = t.E[10]*t.E[13]; prd[ 6] = t.E[ 8]*t.E[15]; prd[ 7] = t.E[11]*t.E[12]; |
474 | prd[ 8] = t.E[ 8]*t.E[14]; prd[ 9] = t.E[10]*t.E[12]; prd[10] = t.E[ 8]*t.E[13]; prd[11] = t.E[ 9]*t.E[12]; |
475 | |
476 | // Calculate first set of 8 cofactors. |
477 | d.E[ 0] = (prd[ 0]*t.E[ 5] + prd[ 3]*t.E[ 6] + prd[ 4]*t.E[ 7]) - (prd[ 1]*t.E[ 5] + prd[ 2]*t.E[ 6] + prd[ 5]*t.E[ 7]); |
478 | d.E[ 1] = (prd[ 1]*t.E[ 4] + prd[ 6]*t.E[ 6] + prd[ 9]*t.E[ 7]) - (prd[ 0]*t.E[ 4] + prd[ 7]*t.E[ 6] + prd[ 8]*t.E[ 7]); |
479 | d.E[ 2] = (prd[ 2]*t.E[ 4] + prd[ 7]*t.E[ 5] + prd[10]*t.E[ 7]) - (prd[ 3]*t.E[ 4] + prd[ 6]*t.E[ 5] + prd[11]*t.E[ 7]); |
480 | d.E[ 3] = (prd[ 5]*t.E[ 4] + prd[ 8]*t.E[ 5] + prd[11]*t.E[ 6]) - (prd[ 4]*t.E[ 4] + prd[ 9]*t.E[ 5] + prd[10]*t.E[ 6]); |
481 | d.E[ 4] = (prd[ 1]*t.E[ 1] + prd[ 2]*t.E[ 2] + prd[ 5]*t.E[ 3]) - (prd[ 0]*t.E[ 1] + prd[ 3]*t.E[ 2] + prd[ 4]*t.E[ 3]); |
482 | d.E[ 5] = (prd[ 0]*t.E[ 0] + prd[ 7]*t.E[ 2] + prd[ 8]*t.E[ 3]) - (prd[ 1]*t.E[ 0] + prd[ 6]*t.E[ 2] + prd[ 9]*t.E[ 3]); |
483 | d.E[ 6] = (prd[ 3]*t.E[ 0] + prd[ 6]*t.E[ 1] + prd[11]*t.E[ 3]) - (prd[ 2]*t.E[ 0] + prd[ 7]*t.E[ 1] + prd[10]*t.E[ 3]); |
484 | d.E[ 7] = (prd[ 4]*t.E[ 0] + prd[ 9]*t.E[ 1] + prd[10]*t.E[ 2]) - (prd[ 5]*t.E[ 0] + prd[ 8]*t.E[ 1] + prd[11]*t.E[ 2]); |
485 | |
486 | // Calculate intermediate products for the second set of 8 cofactors. |
487 | prd[ 0] = t.E[ 2]*t.E[ 7]; prd[ 1] = t.E[ 3]*t.E[ 6]; prd[ 2] = t.E[ 1]*t.E[ 7]; prd[ 3] = t.E[ 3]*t.E[ 5]; |
488 | prd[ 4] = t.E[ 1]*t.E[ 6]; prd[ 5] = t.E[ 2]*t.E[ 5]; prd[ 6] = t.E[ 0]*t.E[ 7]; prd[ 7] = t.E[ 3]*t.E[ 4]; |
489 | prd[ 8] = t.E[ 0]*t.E[ 6]; prd[ 9] = t.E[ 2]*t.E[ 4]; prd[10] = t.E[ 0]*t.E[ 5]; prd[11] = t.E[ 1]*t.E[ 4]; |
490 | |
491 | // Calculate second set of 8 cofactors. |
492 | d.E[ 8] = (prd[ 0]*t.E[13] + prd[ 3]*t.E[14] + prd[ 4]*t.E[15]) - (prd[ 1]*t.E[13] + prd[ 2]*t.E[14] + prd[ 5]*t.E[15]); |
493 | d.E[ 9] = (prd[ 1]*t.E[12] + prd[ 6]*t.E[14] + prd[ 9]*t.E[15]) - (prd[ 0]*t.E[12] + prd[ 7]*t.E[14] + prd[ 8]*t.E[15]); |
494 | d.E[10] = (prd[ 2]*t.E[12] + prd[ 7]*t.E[13] + prd[10]*t.E[15]) - (prd[ 3]*t.E[12] + prd[ 6]*t.E[13] + prd[11]*t.E[15]); |
495 | d.E[11] = (prd[ 5]*t.E[12] + prd[ 8]*t.E[13] + prd[11]*t.E[14]) - (prd[ 4]*t.E[12] + prd[ 9]*t.E[13] + prd[10]*t.E[14]); |
496 | d.E[12] = (prd[ 2]*t.E[10] + prd[ 5]*t.E[11] + prd[ 1]*t.E[ 9]) - (prd[ 4]*t.E[11] + prd[ 0]*t.E[ 9] + prd[ 3]*t.E[10]); |
497 | d.E[13] = (prd[ 8]*t.E[11] + prd[ 0]*t.E[ 8] + prd[ 7]*t.E[10]) - (prd[ 6]*t.E[10] + prd[ 9]*t.E[11] + prd[ 1]*t.E[ 8]); |
498 | d.E[14] = (prd[ 6]*t.E[ 9] + prd[11]*t.E[11] + prd[ 3]*t.E[ 8]) - (prd[10]*t.E[11] + prd[ 2]*t.E[ 8] + prd[ 7]*t.E[ 9]); |
499 | d.E[15] = (prd[10]*t.E[10] + prd[ 4]*t.E[ 8] + prd[ 9]*t.E[ 9]) - (prd[ 8]*t.E[ 9] + prd[11]*t.E[10] + prd[ 5]*t.E[ 8]); |
500 | |
501 | // Calculate determinant. |
502 | float det = t.E[0]*d.E[0] + t.E[1]*d.E[1] + t.E[2]*d.E[2] + t.E[3]*d.E[3]; |
503 | if (det == 0.0f) |
504 | return false; |
505 | |
506 | // Calculate inverse by multiplying by reciprocal of determinant. |
507 | tDiv(d, det); |
508 | #endif |
509 | |
510 | return true; |
511 | } |
512 | |
513 | |
514 | void tMath::tInvertAffine(tMat4& d, const tMat4& m) |
515 | { |
516 | // Let A be a 4x4 affine matrix where R is a 3x3 orthonormal matrix (the rotation part), T is the 3x1 translation, |
517 | // and the row 4 of A is U, where U = [ 0 0 0 1 ]. |
518 | // A = [ R T ] |
519 | // [ U ] |
520 | // |
521 | // then the inverse is given by |
522 | // Inv(A) = [ Inv(R) -Inv(R)*T ] |
523 | // [ U ] |
524 | d.a11 = m.a11; d.a21 = m.a12; d.a31 = m.a13; |
525 | d.a12 = m.a21; d.a22 = m.a22; d.a32 = m.a23; |
526 | d.a13 = m.a31; d.a23 = m.a32; d.a33 = m.a33; |
527 | |
528 | d.C4.x = -m.C1.x*m.C4.x + -m.C1.y*m.C4.y + -m.C1.z*m.C4.z; |
529 | d.C4.y = -m.C2.x*m.C4.x + -m.C2.y*m.C4.y + -m.C2.z*m.C4.z; |
530 | d.C4.z = -m.C3.x*m.C4.x + -m.C3.y*m.C4.y + -m.C3.z*m.C4.z; |
531 | } |
532 | |
533 | |
534 | void tMath::tMakeLookAt(tMat4& d, const tVec3& eye, const tVec3& look, const tVec3& up) |
535 | { |
536 | tVec3 z; |
537 | tSub(z, eye, look); |
538 | tNormalize(z); |
539 | |
540 | tVec3 y(up); |
541 | tVec3 x; |
542 | tCross(x, y, z); |
543 | tCross(y, z, x); |
544 | |
545 | tNormalize(x); |
546 | tNormalize(y); |
547 | |
548 | tSet(d.C1, x.x, y.x, z.x, 0.0f); |
549 | tSet(d.C2, x.y, y.y, z.y, 0.0f); |
550 | tSet(d.C3, x.z, y.z, z.z, 0.0f); |
551 | tSet(d.C4, 0.0f, 0.0f, 0.0f, 1.0f); |
552 | |
553 | tVec3 neg; |
554 | tNeg(neg, eye); |
555 | d.E[12] = d.E[0]*neg.x + d.E[4]*neg.y + d.E[ 8]*neg.z; |
556 | d.E[13] = d.E[1]*neg.x + d.E[5]*neg.y + d.E[ 9]*neg.z; |
557 | d.E[14] = d.E[2]*neg.x + d.E[6]*neg.y + d.E[10]*neg.z; |
558 | } |
559 | |
560 | |
561 | void tMath::tMakeRotate(tMat4& d, const tVec3& axis, float angle) |
562 | { |
563 | float t = tLengthSq(axis); |
564 | if (t < 0.00001f) |
565 | { |
566 | tIdentity(d); |
567 | return; |
568 | } |
569 | |
570 | float x = axis.x; |
571 | float y = axis.y; |
572 | float z = axis.z; |
573 | float s = tSin(angle); |
574 | float c = tCos(angle); |
575 | |
576 | t = tRecipSqrtFast(t); |
577 | x *= t; y *= t; z *= t; |
578 | float xx = x*x; float yy = y*y; float zz = z*z; |
579 | float xy = x*y; float yz = y*z; float zx = z*x; |
580 | float xs = x*s; float ys = y*s; float zs = z*s; |
581 | float rc = 1.0f - c; |
582 | |
583 | // Again, this is correct, even though at first it looks like the transpose. |
584 | // It is being filled out in column major order for efficiency. |
585 | d.a11 = rc*xx + c; d.a21 = rc*xy + zs; d.a31 = rc*zx - ys; d.a41 = 0.0f; |
586 | d.a12 = rc*xy - zs; d.a22 = rc*yy + c; d.a32 = rc*yz + xs; d.a42 = 0.0f; |
587 | d.a13 = rc*zx + ys; d.a23 = rc*yz - xs; d.a33 = rc*zz + c; d.a43 = 0.0f; |
588 | d.a14 = 0.0f; d.a24 = 0.0f; d.a34 = 0.0f; d.a44 = 1.0f; |
589 | } |
590 | |
591 | |
592 | void tMath::tMakeRotate(tMat4& d, const tVec3& a, const tVec3& b) |
593 | { |
594 | // Based on "Efficiently building a matrix to rotate one vector to another vector", by Thomas M�ller and John F. |
595 | // Hughes, Journal of Graphics Tools, Vol 4, No 4, 1999. The method is also described in "Real-Time Rendering", by |
596 | // Akenine-M�ller and Haines, 2nd Edition, Section 3.3.2. |
597 | float e = tDot(a, b); |
598 | tVec3 v; tCross(v, a, b); |
599 | |
600 | if (tLength(v) < Epsilon) // Parallel? |
601 | { |
602 | if (e > 0.0f) // Aligned? |
603 | { |
604 | tIdentity(d); |
605 | return; |
606 | } |
607 | else if (e < 0.0f) |
608 | { |
609 | // Rotate by Pi radians around an axis perpendicular to a. |
610 | float smallest = tMin(a.x, a.y, a.z); |
611 | |
612 | // Make vector u perpendicular to a. |
613 | tVec3 u; |
614 | if (a.x == smallest) |
615 | tSet(u, 0.0f, -a.z, a.y); |
616 | else if (a.y == smallest) |
617 | tSet(u, -a.z, 0.0f, a.x); |
618 | else |
619 | tSet(u, -a.y, a.z, 0.0f); |
620 | |
621 | tMakeRotate(d, u, Pi); |
622 | } |
623 | } |
624 | |
625 | // Not parallel to each other. |
626 | float h = (1.0f - e) / tDot(v, v); |
627 | d.a11 = e + h*v.x*v.x; d.a21 = h * v.x*v.y + v.z; d.a31 = h*v.x*v.z - v.y; d.a41 = 0.0f; |
628 | d.a12 = h*v.x*v.y - v.z; d.a22 = e + h*v.y*v.y; d.a32 = h*v.y*v.z + v.x; d.a42 = 0.0f; |
629 | d.a13 = h*v.x*v.z + v.y; d.a23 = h*v.y*v.z - v.x; d.a33 = e + h*v.z*v.z; d.a43 = 0.0f; |
630 | d.a14 = 0.0f; d.a24 = 0.0f; d.a34 = 0.0f; d.a44 = 1.0f; |
631 | } |
632 | |
633 | |
634 | void tMath::tMakeRotateXYZ(tMat4& d, float a, float b, float c) |
635 | { |
636 | // An excellent reference can be found here: http://www.songho.ca/opengl/gl_anglestoaxes.html |
637 | float ca = tCos(a); float sa = tSin(a); |
638 | float cb = tCos(b); float sb = tSin(b); |
639 | float cc = tCos(c); float sc = tSin(c); |
640 | |
641 | // For all these, cos is written before sin, and secondarily, a before b before c. |
642 | d.a11 = cb*cc; d.a21 = cb*sc; d.a31 = -sb; d.a41 = 0.0f; |
643 | d.a12 = cc*sa*sb - sc*ca; d.a22 = ca*cc + sa*sb*sc; d.a32 = cb*sa; d.a42 = 0.0f; |
644 | d.a13 = sa*sc + ca*cc*sb; d.a23 = ca*sb*sc - cc*sa; d.a33 = ca*cb; d.a43 = 0.0f; |
645 | d.a14 = 0.0f; d.a24 = 0.0f; d.a34 = 0.0f; d.a44 = 1.0f; |
646 | } |
647 | |
648 | |
649 | void tMath::tMakeRotateYZX(tMat4& d, float a, float b, float c) |
650 | { |
651 | float ca = tCos(a); float sa = tSin(a); |
652 | float cb = tCos(b); float sb = tSin(b); |
653 | float cc = tCos(c); float sc = tSin(c); |
654 | |
655 | d.a11 = cb*cc; d.a21 = ca*cb*sc + sa*sb; d.a31 = cb*sa*sc - ca*sb; d.a41 = 0.0f; |
656 | d.a12 = -sc; d.a22 = ca*cc; d.a32 = cc*sa; d.a42 = 0.0f; |
657 | d.a13 = cc*sb; d.a23 = ca*sb*sc - cb*sa; d.a33 = sa*sb*sc + ca*cb; d.a43 = 0.0f; |
658 | d.a14 = 0.0f; d.a24 = 0.0f; d.a34 = 0.0f; d.a44 = 1.0f; |
659 | } |
660 | |
661 | |
662 | void tMath::tMakeRotateZXY(tMat4& d, float a, float b, float c) |
663 | { |
664 | float ca = tCos(a); float sa = tSin(a); |
665 | float cb = tCos(b); float sb = tSin(b); |
666 | float cc = tCos(c); float sc = tSin(c); |
667 | |
668 | d.a11 = cb*cc + sa*sb*sc; d.a21 = ca*sc; d.a31 = cb*sa*sc - cc*sb; d.a41 = 0.0f; |
669 | d.a12 = cc*sa*sb - cb*sc; d.a22 = ca*cc; d.a32 = sb*sc + cb*cc*sa; d.a42 = 0.0f; |
670 | d.a13 = ca*sb; d.a23 = -sa; d.a33 = ca*cb; d.a43 = 0.0f; |
671 | d.a14 = 0.0f; d.a24 = 0.0f; d.a34 = 0.0f; d.a44 = 1.0f; |
672 | } |
673 | |
674 | |
675 | void tMath::tMakeRotateZYX(tMat4& d, float a, float b, float c) |
676 | { |
677 | float ca = tCos(a); float sa = tSin(a); |
678 | float cb = tCos(b); float sb = tSin(b); |
679 | float cc = tCos(c); float sc = tSin(c); |
680 | |
681 | d.a11 = cb*cc; d.a21 = cc*sa*sb + ca*sc; d.a31 = sa*sc - ca*cc*sb; d.a41 = 0.0f; |
682 | d.a12 = -cb*sc; d.a22 = ca*cc - sa*sb*sc; d.a32 = ca*sb*sc + cc*sa; d.a42 = 0.0f; |
683 | d.a13 = sb; d.a23 = -cb*sa; d.a33 = ca*cb; d.a43 = 0.0f; |
684 | d.a14 = 0.0f; d.a24 = 0.0f; d.a34 = 0.0f; d.a44 = 1.0f; |
685 | } |
686 | |
687 | |
688 | void tMath::tMakeRotateXZY(tMat4& d, float a, float b, float c) |
689 | { |
690 | float ca = tCos(a); float sa = tSin(a); |
691 | float cb = tCos(b); float sb = tSin(b); |
692 | float cc = tCos(c); float sc = tSin(c); |
693 | |
694 | // Note there is (was?) a typo for a12 at the site: http://www.songho.ca/opengl/gl_anglestoaxes.html |
695 | // I posted a correction. It may or may not have been updated. In any case, a12 is correct below. |
696 | d.a11 = cb*cc; d.a21 = sc; d.a31 = -cc*sb; d.a41 = 0.0f; |
697 | d.a12 = sa*sb - ca*cb*sc; d.a22 = ca*cc; d.a32 = ca*sb*sc + cb*sa; d.a42 = 0.0f; |
698 | d.a13 = cb*sa*sc + ca*sb; d.a23 = -cc*sa; d.a33 = ca*cb - sa*sb*sc; d.a43 = 0.0f; |
699 | d.a14 = 0.0f; d.a24 = 0.0f; d.a34 = 0.0f; d.a44 = 1.0f; |
700 | } |
701 | |
702 | |
703 | void tMath::tMakeRotateYXZ(tMat4& d, float a, float b, float c) |
704 | { |
705 | float ca = tCos(a); float sa = tSin(a); |
706 | float cb = tCos(b); float sb = tSin(b); |
707 | float cc = tCos(c); float sc = tSin(c); |
708 | |
709 | d.a11 = cb*cc - sa*sb*sc; d.a21 = cb*sc + cc*sa*sb; d.a31 = -ca*sb; d.a41 = 0.0f; |
710 | d.a12 = -ca*sc; d.a22 = ca*cc; d.a32 = sa; d.a42 = 0.0f; |
711 | d.a13 = cc*sb + cb*sa*sc; d.a23 = sb*sc - cb*cc*sa; d.a33 = ca*cb; d.a43 = 0.0f; |
712 | d.a14 = 0.0f; d.a24 = 0.0f; d.a34 = 0.0f; d.a44 = 1.0f; |
713 | } |
714 | |
715 | |
716 | void tMath::tMakeProjPersp(tMat4& d, float left, float right, float bottom, float top, float near, float far) |
717 | { |
718 | // Generates: 2n/(r-l) 0 (r+l)/(r-l) 0 |
719 | // 0 2n/(t-b) (t+b)/(t-b) 0 |
720 | // 0 0 -(f+n)/(f-n) -2fn/(f-n) |
721 | // 0 0 -1 0 |
722 | tZero(d); |
723 | float lr = right-left; float bt = top-bottom; |
724 | float nf = far-near; float n2 = 2.0f*near; |
725 | |
726 | d.a11 = n2 / lr; |
727 | d.a22 = n2 / bt; |
728 | d.a13 = (right+left) / lr; |
729 | d.a23 = (top+bottom) / bt; |
730 | d.a33 = -(far+near) / nf; |
731 | d.a43 = -1.0f; |
732 | d.a34 = -n2*far / nf; |
733 | } |
734 | |
735 | |
736 | void tMath::tMakeProjPersp(tMat4& d, const tVec3& boxMin, const tVec3& boxMax) |
737 | { |
738 | float left = boxMin.x; |
739 | float right = boxMax.x; |
740 | float bottom = boxMin.y; |
741 | float top = boxMax.y; |
742 | float nearPlane = -boxMax.z; |
743 | float farPlane = -boxMin.z; |
744 | tMakeProjPersp(d, left, right, bottom, top, nearPlane, farPlane); |
745 | } |
746 | |
747 | |
748 | void tMath::tMakeProjPerspSym(tMat4& d, float right, float top, float nearPlane, float farPlane) |
749 | { |
750 | // Symmetry allows a faster implementation since left = -right and bottom = -top. |
751 | // Generates: n/r 0 0 0 |
752 | // 0 n/t 0 0 |
753 | // 0 0 -(f+n)/(f-n) -2fn/(f-n) |
754 | // 0 0 -1 0 |
755 | tZero(d); |
756 | d.a11 = nearPlane/right; |
757 | d.a22 = nearPlane/top; |
758 | d.a33 = -(farPlane+nearPlane)/(farPlane-nearPlane); |
759 | d.a34 = -2.0f*farPlane*nearPlane/(farPlane-nearPlane); |
760 | d.a43 = -1.0f; |
761 | } |
762 | |
763 | |
764 | void tMath::tMakeProjPerspSymFovV(tMat4& d, float fovX, float aspect, float nearPlane, float farPlane) |
765 | { |
766 | tAssert(aspect > 0.0f); |
767 | float top = nearPlane*tTan(fovX/2.0f); |
768 | float right = top*aspect; |
769 | tMakeProjPerspSym(d, right, top, nearPlane, farPlane); |
770 | } |
771 | |
772 | |
773 | void tMath::tMakeProjPerspSymFovH(tMat4& d, float fovY, float aspect, float nearPlane, float farPlane) |
774 | { |
775 | tAssert(aspect > 0.0f); |
776 | float right = nearPlane*tTan(fovY/2.0f); |
777 | float top = right/aspect; |
778 | tMakeProjPerspSym(d, right, top, nearPlane, farPlane); |
779 | } |
780 | |
781 | |
782 | void tMath::tMakeProjPerspOffset(tMat4& d, float right, float top, float nearPlane, float farPlane, float offsetX, float offsetY) |
783 | { |
784 | float offsetH = -offsetX*right; |
785 | float offsetV = -offsetY*top; |
786 | tMakeProjPersp(d, offsetH-right, offsetH+right, offsetV-top, offsetV+top, nearPlane, farPlane); |
787 | } |
788 | |
789 | |
790 | void tMath::tMakeProjPerspFovVOffset(tMat4& d, float fovX, float aspect, float nearPlane, float farPlane, float offsetX, float offsetY) |
791 | { |
792 | tAssert(aspect > 0.0f); |
793 | float top = nearPlane*tTan(fovX/2.0f); |
794 | float right = top*aspect; |
795 | |
796 | float offsetH = -offsetX*right; |
797 | float offsetV = -offsetY*top; |
798 | tMakeProjPersp(d, offsetH-right, offsetH+right, offsetV-top, offsetV+top, nearPlane, farPlane); |
799 | } |
800 | |
801 | |
802 | void tMath::tMakeProjPerspFovHOffset(tMat4& d, float fovY, float aspect, float nearPlane, float farPlane, float offsetX, float offsetY) |
803 | { |
804 | tAssert(aspect > 0.0f); |
805 | float right = nearPlane*tTan(fovY/2.0f); |
806 | float top = right/aspect; |
807 | |
808 | float offsetH = -offsetX*right; |
809 | float offsetV = -offsetY*top; |
810 | tMakeProjPersp(d, offsetH-right, offsetH+right, offsetV-top, offsetV+top, nearPlane, farPlane); |
811 | } |
812 | |
813 | |
814 | void tMath::tMakeProjParallel(tMat4& d, const tVec3& boxMin, const tVec3& boxMax) |
815 | { |
816 | tZero(d); |
817 | d.a11 = 2.0f / (boxMax.x-boxMin.x); |
818 | d.a14 = -(boxMax.x+boxMin.x) / (boxMax.x-boxMin.x); |
819 | d.a22 = 2.0f / (boxMax.y-boxMin.y); |
820 | d.a24 = -(boxMax.y+boxMin.y) / (boxMax.y-boxMin.y); |
821 | d.a33 = -2.0f / (boxMax.z-boxMin.z); |
822 | d.a34 = -(boxMax.z+boxMin.z) / (boxMax.z-boxMin.z); |
823 | d.a44 = 1.0f; |
824 | } |
825 | |
826 | |
827 | void tMath::tMakeOrthoNormal(tMat4& m) |
828 | { |
829 | tVec3 c1; |
830 | tSet(c1, m.C1); |
831 | tNormalize(c1); |
832 | |
833 | tVec3 t2; |
834 | tSet(t2, m.C2); |
835 | |
836 | tVec3 c3; |
837 | tCross(c3, c1, t2); |
838 | tNormalize(c3); |
839 | |
840 | tVec3 c2; |
841 | tCross(c2, c3, c1); |
842 | |
843 | tSet(m.C1, c1); |
844 | tSet(m.C2, c2); |
845 | tSet(m.C3, c3); |
846 | |
847 | m.C1.w = m.C2.w = m.C3.w = 0.0f; m.C4.w = 1.0f; |
848 | } |
849 | |
850 | |
851 | void tMath::tMakeOrthoUniform(tMat4& m) |
852 | { |
853 | tVec3 c1; |
854 | tSet(c1, m.C1); |
855 | float scale = tLength(c1); // We use the length of the first column for all columns. |
856 | |
857 | tVec3 c2; |
858 | tSet(c2, m.C2); |
859 | |
860 | tVec3 c3; |
861 | tCross(c3, c1, c2); |
862 | tNormalizeScale(c3, scale); |
863 | tCross(c2, c3, c1); |
864 | tNormalizeScale(c2, scale); |
865 | |
866 | tSet(m.C2, c2); |
867 | tSet(m.C3, c3); |
868 | m.C1.w = m.C2.w = m.C3.w = 0.0f; m.C4.w = 1.0f; |
869 | } |
870 | |
871 | |
872 | void tMath::tMakeOrthoNonUniform(tMat4& m) |
873 | { |
874 | tVec3 c1; |
875 | tSet(c1, m.C1); |
876 | |
877 | tVec3 c2; |
878 | tSet(c2, m.C2); |
879 | float scale2 = tLength(c2); |
880 | |
881 | m.C3.w = 0.0f; |
882 | float scale3 = tLength(m.C3); |
883 | |
884 | tVec3 c3; |
885 | tCross(c3, c1, c2); |
886 | tNormalizeScale(c3, scale3); |
887 | |
888 | tCross(c2, c3, c1); |
889 | tNormalizeScale(c2, scale2); |
890 | |
891 | tSet(m.C2, c2); |
892 | tSet(m.C3, c3); |
893 | m.C1.w = m.C2.w = 0.0f; m.C4.w = 1.0f; |
894 | } |
895 | |
896 | |
897 | void tMath::(tVec4 planes[6], const tMat4& m, bool outwardNormals, bool normalizePlanes) |
898 | { |
899 | // Order is: Right, Left, Top, Bottom, Near, Far. |
900 | tSet(planes[0], m.C1.d - m.C1.a, m.C2.d - m.C2.a, m.C3.d - m.C3.a, m.C4.d - m.C4.a ); |
901 | tSet(planes[1], m.C1.d + m.C1.a, m.C2.d + m.C2.a, m.C3.d + m.C3.a, m.C4.d + m.C4.a ); |
902 | tSet(planes[2], m.C1.d - m.C1.b, m.C2.d - m.C2.b, m.C3.d - m.C3.b, m.C4.d - m.C4.b ); |
903 | tSet(planes[3], m.C1.d + m.C1.b, m.C2.d + m.C2.b, m.C3.d + m.C3.b, m.C4.d + m.C4.b ); |
904 | tSet(planes[4], m.C1.d + m.C1.c, m.C2.d + m.C2.c, m.C3.d + m.C3.c, m.C4.d + m.C4.c ); |
905 | tSet(planes[5], m.C1.d - m.C1.c, m.C2.d - m.C2.c, m.C3.d - m.C3.c, m.C4.d - m.C4.c ); |
906 | |
907 | if (outwardNormals) |
908 | { |
909 | for (int p = 0; p < 6; p++) |
910 | tNeg(planes[p]); |
911 | } |
912 | |
913 | if (normalizePlanes) |
914 | { |
915 | for (int p = 0; p < 6; p++) |
916 | { |
917 | tVec3 point; |
918 | tSet(point, planes[p]); |
919 | float length = tNormalizeGetLength(point); |
920 | tDiv(planes[p], length); |
921 | } |
922 | } |
923 | } |
924 | |
925 | |
926 | bool tMath:: |
927 | ( |
928 | tVec3& sol1, tVec3& sol2, const tMat4& rot, |
929 | float gimbalZ, tIntervalBias bias |
930 | ) |
931 | { |
932 | // Extraction based on http://staff.city.ac.uk/~sbbh653/publications/euler.pdf |
933 | float gimbalEpsilon = 0.000001f; |
934 | bool gimbalNeg = tApproxEqual(rot.a31, -1.0f, gimbalEpsilon); |
935 | bool gimbalPos = tApproxEqual(rot.a31, 1.0f, gimbalEpsilon); |
936 | if (!gimbalNeg && !gimbalPos) |
937 | { |
938 | sol1.y = -tArcSin(rot.a31); // [-Pi/2, Pi/2] |
939 | sol2.y = tNormalizedAngle( Pi - sol1.y, bias ); |
940 | |
941 | float ct1 = tCos(sol1.y); // Cos(theta1) |
942 | float ct2 = tCos(sol2.y); // Cos(theta2) |
943 | sol1.x = tNormalizedAngle( tArcTan(rot.a32/ct1, rot.a33/ct1), bias ); |
944 | sol2.x = tNormalizedAngle( tArcTan(rot.a32/ct2, rot.a33/ct2), bias ); |
945 | sol1.z = tNormalizedAngle( tArcTan(rot.a21/ct1, rot.a11/ct1), bias ); |
946 | sol2.z = tNormalizedAngle( tArcTan(rot.a21/ct2, rot.a11/ct2), bias ); |
947 | } |
948 | else |
949 | { |
950 | // User choice of particular solution returned. |
951 | sol1.z = gimbalZ; |
952 | if (gimbalNeg) |
953 | { |
954 | sol1.y = PiOver2; |
955 | sol1.x = tNormalizedAngle(sol1.z + tArcTan(rot.a12, rot.a13), bias); |
956 | } |
957 | else |
958 | { |
959 | sol1.y = -PiOver2; |
960 | sol1.x = tNormalizedAngle(-sol1.z + tArcTan(-rot.a12, -rot.a13), bias); |
961 | } |
962 | sol2 = sol1; |
963 | } |
964 | |
965 | return gimbalNeg || gimbalPos; |
966 | } |
967 | |
968 | |
969 | bool tMath::(tVec3& sol1, tVec3& sol2, const tMat4& affine, float gimbalZ, tIntervalBias bias) |
970 | { |
971 | tMat4 r; tSet(r, affine); |
972 | tNormalize(r.C1); |
973 | tNormalize(r.C2); |
974 | tNormalize(r.C3); |
975 | return tExtractRotationEulerXYZ(sol1, sol2, r, gimbalZ, bias); |
976 | } |
977 | |
978 | |
979 | bool tMath::tApproachAngle(float& angle, float dest, float rate, float dt) |
980 | { |
981 | float diff = dest - angle; |
982 | while (diff > Pi) |
983 | diff -= TwoPi; |
984 | |
985 | while (diff < -Pi) |
986 | diff += TwoPi; |
987 | |
988 | float delta = rate*dt; |
989 | if (tAbs(diff) <= delta) |
990 | { |
991 | angle = dest; |
992 | return true; |
993 | } |
994 | |
995 | angle += tSign(diff)*delta; |
996 | return false; |
997 | } |
998 | |
999 | |
1000 | bool tMath::tApproachOrientation(tQuat& curr, const tQuat& dest, float rate, float dt) |
1001 | { |
1002 | // Here is the quaternion that will rotate from curr to dest. q' = q1^-1 * q2. |
1003 | tQuat rot; |
1004 | tConjugate(rot, curr); |
1005 | tMul(rot, dest); |
1006 | |
1007 | // Angle is in [0,Pi]. It will be unit length. |
1008 | float angle; |
1009 | tVec3 axis; |
1010 | tGet(axis, angle, rot); |
1011 | if (angle <= (rate*dt)) |
1012 | { |
1013 | curr = dest; |
1014 | return true; |
1015 | } |
1016 | |
1017 | tQuat diff; |
1018 | tSet(diff, axis, rate*dt); |
1019 | tMul(curr, diff); |
1020 | tNormalize(curr); |
1021 | return false; |
1022 | } |
1023 | |