1 | // Special functions -*- C++ -*-  |
2 |   |
3 | // Copyright (C) 2006-2019 Free Software Foundation, Inc.  |
4 | //  |
5 | // This file is part of the GNU ISO C++ Library. This library is free  |
6 | // software; you can redistribute it and/or modify it under the  |
7 | // terms of the GNU General Public License as published by the  |
8 | // Free Software Foundation; either version 3, or (at your option)  |
9 | // any later version.  |
10 | //  |
11 | // This library is distributed in the hope that it will be useful,  |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of  |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  |
14 | // GNU General Public License for more details.  |
15 | //  |
16 | // Under Section 7 of GPL version 3, you are granted additional  |
17 | // permissions described in the GCC Runtime Library Exception, version  |
18 | // 3.1, as published by the Free Software Foundation.  |
19 |   |
20 | // You should have received a copy of the GNU General Public License and  |
21 | // a copy of the GCC Runtime Library Exception along with this program;  |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see  |
23 | // <http://www.gnu.org/licenses/>.  |
24 |   |
25 | /** @file tr1/beta_function.tcc  |
26 | * This is an internal header file, included by other library headers.  |
27 | * Do not attempt to use it directly. @headername{tr1/cmath}  |
28 | */  |
29 |   |
30 | //  |
31 | // ISO C++ 14882 TR1: 5.2 Special functions  |
32 | //  |
33 |   |
34 | // Written by Edward Smith-Rowland based on:  |
35 | // (1) Handbook of Mathematical Functions,  |
36 | // ed. Milton Abramowitz and Irene A. Stegun,  |
37 | // Dover Publications,  |
38 | // Section 6, pp. 253-266  |
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl  |
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,  |
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),  |
42 | // 2nd ed, pp. 213-216  |
43 | // (4) Gamma, Exploring Euler's Constant, Julian Havil,  |
44 | // Princeton, 2003.  |
45 |   |
46 | #ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC  |
47 | #define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1  |
48 |   |
49 | namespace std _GLIBCXX_VISIBILITY(default)  |
50 | {  |
51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION  |
52 |   |
53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS  |
54 | # define _GLIBCXX_MATH_NS ::std  |
55 | #elif defined(_GLIBCXX_TR1_CMATH)  |
56 | namespace tr1  |
57 | {  |
58 | # define _GLIBCXX_MATH_NS ::std::tr1  |
59 | #else  |
60 | # error do not include this header directly, use <cmath> or <tr1/cmath>  |
61 | #endif  |
62 | // [5.2] Special functions  |
63 |   |
64 | // Implementation-space details.  |
65 | namespace __detail  |
66 | {  |
67 | /**  |
68 | * @brief Return the beta function: \f$B(x,y)\f$.  |
69 | *   |
70 | * The beta function is defined by  |
71 | * @f[  |
72 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}  |
73 | * @f]  |
74 | *  |
75 | * @param __x The first argument of the beta function.  |
76 | * @param __y The second argument of the beta function.  |
77 | * @return The beta function.  |
78 | */  |
79 | template<typename _Tp>  |
80 | _Tp  |
81 | __beta_gamma(_Tp __x, _Tp __y)  |
82 | {  |
83 |   |
84 | _Tp __bet;  |
85 | #if _GLIBCXX_USE_C99_MATH_TR1  |
86 | if (__x > __y)  |
87 | {  |
88 | __bet = _GLIBCXX_MATH_NS::tgamma(__x)  |
89 | / _GLIBCXX_MATH_NS::tgamma(__x + __y);  |
90 | __bet *= _GLIBCXX_MATH_NS::tgamma(__y);  |
91 | }  |
92 | else  |
93 | {  |
94 | __bet = _GLIBCXX_MATH_NS::tgamma(__y)  |
95 | / _GLIBCXX_MATH_NS::tgamma(__x + __y);  |
96 | __bet *= _GLIBCXX_MATH_NS::tgamma(__x);  |
97 | }  |
98 | #else  |
99 | if (__x > __y)  |
100 | {  |
101 | __bet = __gamma(__x) / __gamma(__x + __y);  |
102 | __bet *= __gamma(__y);  |
103 | }  |
104 | else  |
105 | {  |
106 | __bet = __gamma(__y) / __gamma(__x + __y);  |
107 | __bet *= __gamma(__x);  |
108 | }  |
109 | #endif  |
110 |   |
111 | return __bet;  |
112 | }  |
113 |   |
114 | /**  |
115 | * @brief Return the beta function \f$B(x,y)\f$ using  |
116 | * the log gamma functions.  |
117 | *   |
118 | * The beta function is defined by  |
119 | * @f[  |
120 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}  |
121 | * @f]  |
122 | *  |
123 | * @param __x The first argument of the beta function.  |
124 | * @param __y The second argument of the beta function.  |
125 | * @return The beta function.  |
126 | */  |
127 | template<typename _Tp>  |
128 | _Tp  |
129 | __beta_lgamma(_Tp __x, _Tp __y)  |
130 | {  |
131 | #if _GLIBCXX_USE_C99_MATH_TR1  |
132 | _Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x)  |
133 | + _GLIBCXX_MATH_NS::lgamma(__y)  |
134 | - _GLIBCXX_MATH_NS::lgamma(__x + __y);  |
135 | #else  |
136 | _Tp __bet = __log_gamma(__x)  |
137 | + __log_gamma(__y)  |
138 | - __log_gamma(__x + __y);  |
139 | #endif  |
140 | __bet = std::exp(__bet);  |
141 | return __bet;  |
142 | }  |
143 |   |
144 |   |
145 | /**  |
146 | * @brief Return the beta function \f$B(x,y)\f$ using  |
147 | * the product form.  |
148 | *   |
149 | * The beta function is defined by  |
150 | * @f[  |
151 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}  |
152 | * @f]  |
153 | *  |
154 | * @param __x The first argument of the beta function.  |
155 | * @param __y The second argument of the beta function.  |
156 | * @return The beta function.  |
157 | */  |
158 | template<typename _Tp>  |
159 | _Tp  |
160 | __beta_product(_Tp __x, _Tp __y)  |
161 | {  |
162 |   |
163 | _Tp __bet = (__x + __y) / (__x * __y);  |
164 |   |
165 | unsigned int __max_iter = 1000000;  |
166 | for (unsigned int __k = 1; __k < __max_iter; ++__k)  |
167 | {  |
168 | _Tp __term = (_Tp(1) + (__x + __y) / __k)  |
169 | / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));  |
170 | __bet *= __term;  |
171 | }  |
172 |   |
173 | return __bet;  |
174 | }  |
175 |   |
176 |   |
177 | /**  |
178 | * @brief Return the beta function \f$ B(x,y) \f$.  |
179 | *   |
180 | * The beta function is defined by  |
181 | * @f[  |
182 | * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}  |
183 | * @f]  |
184 | *  |
185 | * @param __x The first argument of the beta function.  |
186 | * @param __y The second argument of the beta function.  |
187 | * @return The beta function.  |
188 | */  |
189 | template<typename _Tp>  |
190 | inline _Tp  |
191 | __beta(_Tp __x, _Tp __y)  |
192 | {  |
193 | if (__isnan(__x) || __isnan(__y))  |
194 | return std::numeric_limits<_Tp>::quiet_NaN();  |
195 | else  |
196 | return __beta_lgamma(__x, __y);  |
197 | }  |
198 | } // namespace __detail  |
199 | #undef _GLIBCXX_MATH_NS  |
200 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)  |
201 | } // namespace tr1  |
202 | #endif  |
203 |   |
204 | _GLIBCXX_END_NAMESPACE_VERSION  |
205 | }  |
206 |   |
207 | #endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC  |
208 | |