1 | // Special functions -*- C++ -*-  |
2 |   |
3 | // Copyright (C) 2006-2019 Free Software Foundation, Inc.  |
4 | //  |
5 | // This file is part of the GNU ISO C++ Library. This library is free  |
6 | // software; you can redistribute it and/or modify it under the  |
7 | // terms of the GNU General Public License as published by the  |
8 | // Free Software Foundation; either version 3, or (at your option)  |
9 | // any later version.  |
10 | //  |
11 | // This library is distributed in the hope that it will be useful,  |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of  |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  |
14 | // GNU General Public License for more details.  |
15 | //  |
16 | // Under Section 7 of GPL version 3, you are granted additional  |
17 | // permissions described in the GCC Runtime Library Exception, version  |
18 | // 3.1, as published by the Free Software Foundation.  |
19 |   |
20 | // You should have received a copy of the GNU General Public License and  |
21 | // a copy of the GCC Runtime Library Exception along with this program;  |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see  |
23 | // <http://www.gnu.org/licenses/>.  |
24 |   |
25 | /** @file tr1/ell_integral.tcc  |
26 | * This is an internal header file, included by other library headers.  |
27 | * Do not attempt to use it directly. @headername{tr1/cmath}  |
28 | */  |
29 |   |
30 | //  |
31 | // ISO C++ 14882 TR1: 5.2 Special functions  |
32 | //  |
33 |   |
34 | // Written by Edward Smith-Rowland based on:  |
35 | // (1) B. C. Carlson Numer. Math. 33, 1 (1979)  |
36 | // (2) B. C. Carlson, Special Functions of Applied Mathematics (1977)  |
37 | // (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl  |
38 | // (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,  |
39 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press  |
40 | // (1992), pp. 261-269  |
41 |   |
42 | #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC  |
43 | #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1  |
44 |   |
45 | namespace std _GLIBCXX_VISIBILITY(default)  |
46 | {  |
47 | _GLIBCXX_BEGIN_NAMESPACE_VERSION  |
48 |   |
49 | #if _GLIBCXX_USE_STD_SPEC_FUNCS  |
50 | #elif defined(_GLIBCXX_TR1_CMATH)  |
51 | namespace tr1  |
52 | {  |
53 | #else  |
54 | # error do not include this header directly, use <cmath> or <tr1/cmath>  |
55 | #endif  |
56 | // [5.2] Special functions  |
57 |   |
58 | // Implementation-space details.  |
59 | namespace __detail  |
60 | {  |
61 | /**  |
62 | * @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$  |
63 | * of the first kind.  |
64 | *   |
65 | * The Carlson elliptic function of the first kind is defined by:  |
66 | * @f[  |
67 | * R_F(x,y,z) = \frac{1}{2} \int_0^\infty  |
68 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}  |
69 | * @f]  |
70 | *  |
71 | * @param __x The first of three symmetric arguments.  |
72 | * @param __y The second of three symmetric arguments.  |
73 | * @param __z The third of three symmetric arguments.  |
74 | * @return The Carlson elliptic function of the first kind.  |
75 | */  |
76 | template<typename _Tp>  |
77 | _Tp  |
78 | __ellint_rf(_Tp __x, _Tp __y, _Tp __z)  |
79 | {  |
80 | const _Tp __min = std::numeric_limits<_Tp>::min();  |
81 | const _Tp __max = std::numeric_limits<_Tp>::max();  |
82 | const _Tp __lolim = _Tp(5) * __min;  |
83 | const _Tp __uplim = __max / _Tp(5);  |
84 |   |
85 | if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))  |
86 | std::__throw_domain_error(__N("Argument less than zero "   |
87 | "in __ellint_rf." ));  |
88 | else if (__x + __y < __lolim || __x + __z < __lolim  |
89 | || __y + __z < __lolim)  |
90 | std::__throw_domain_error(__N("Argument too small in __ellint_rf" ));  |
91 | else  |
92 | {  |
93 | const _Tp __c0 = _Tp(1) / _Tp(4);  |
94 | const _Tp __c1 = _Tp(1) / _Tp(24);  |
95 | const _Tp __c2 = _Tp(1) / _Tp(10);  |
96 | const _Tp __c3 = _Tp(3) / _Tp(44);  |
97 | const _Tp __c4 = _Tp(1) / _Tp(14);  |
98 |   |
99 | _Tp __xn = __x;  |
100 | _Tp __yn = __y;  |
101 | _Tp __zn = __z;  |
102 |   |
103 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();  |
104 | const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));  |
105 | _Tp __mu;  |
106 | _Tp __xndev, __yndev, __zndev;  |
107 |   |
108 | const unsigned int __max_iter = 100;  |
109 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)  |
110 | {  |
111 | __mu = (__xn + __yn + __zn) / _Tp(3);  |
112 | __xndev = 2 - (__mu + __xn) / __mu;  |
113 | __yndev = 2 - (__mu + __yn) / __mu;  |
114 | __zndev = 2 - (__mu + __zn) / __mu;  |
115 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));  |
116 | __epsilon = std::max(__epsilon, std::abs(__zndev));  |
117 | if (__epsilon < __errtol)  |
118 | break;  |
119 | const _Tp __xnroot = std::sqrt(__xn);  |
120 | const _Tp __ynroot = std::sqrt(__yn);  |
121 | const _Tp __znroot = std::sqrt(__zn);  |
122 | const _Tp __lambda = __xnroot * (__ynroot + __znroot)  |
123 | + __ynroot * __znroot;  |
124 | __xn = __c0 * (__xn + __lambda);  |
125 | __yn = __c0 * (__yn + __lambda);  |
126 | __zn = __c0 * (__zn + __lambda);  |
127 | }  |
128 |   |
129 | const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;  |
130 | const _Tp __e3 = __xndev * __yndev * __zndev;  |
131 | const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2  |
132 | + __c4 * __e3;  |
133 |   |
134 | return __s / std::sqrt(__mu);  |
135 | }  |
136 | }  |
137 |   |
138 |   |
139 | /**  |
140 | * @brief Return the complete elliptic integral of the first kind  |
141 | * @f$ K(k) @f$ by series expansion.  |
142 | *   |
143 | * The complete elliptic integral of the first kind is defined as  |
144 | * @f[  |
145 | * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}  |
146 | * {\sqrt{1 - k^2sin^2\theta}}  |
147 | * @f]  |
148 | *   |
149 | * This routine is not bad as long as |k| is somewhat smaller than 1  |
150 | * but is not is good as the Carlson elliptic integral formulation.  |
151 | *   |
152 | * @param __k The argument of the complete elliptic function.  |
153 | * @return The complete elliptic function of the first kind.  |
154 | */  |
155 | template<typename _Tp>  |
156 | _Tp  |
157 | __comp_ellint_1_series(_Tp __k)  |
158 | {  |
159 |   |
160 | const _Tp __kk = __k * __k;  |
161 |   |
162 | _Tp __term = __kk / _Tp(4);  |
163 | _Tp __sum = _Tp(1) + __term;  |
164 |   |
165 | const unsigned int __max_iter = 1000;  |
166 | for (unsigned int __i = 2; __i < __max_iter; ++__i)  |
167 | {  |
168 | __term *= (2 * __i - 1) * __kk / (2 * __i);  |
169 | if (__term < std::numeric_limits<_Tp>::epsilon())  |
170 | break;  |
171 | __sum += __term;  |
172 | }  |
173 |   |
174 | return __numeric_constants<_Tp>::__pi_2() * __sum;  |
175 | }  |
176 |   |
177 |   |
178 | /**  |
179 | * @brief Return the complete elliptic integral of the first kind  |
180 | * @f$ K(k) @f$ using the Carlson formulation.  |
181 | *   |
182 | * The complete elliptic integral of the first kind is defined as  |
183 | * @f[  |
184 | * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}  |
185 | * {\sqrt{1 - k^2 sin^2\theta}}  |
186 | * @f]  |
187 | * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the  |
188 | * first kind.  |
189 | *   |
190 | * @param __k The argument of the complete elliptic function.  |
191 | * @return The complete elliptic function of the first kind.  |
192 | */  |
193 | template<typename _Tp>  |
194 | _Tp  |
195 | __comp_ellint_1(_Tp __k)  |
196 | {  |
197 |   |
198 | if (__isnan(__k))  |
199 | return std::numeric_limits<_Tp>::quiet_NaN();  |
200 | else if (std::abs(__k) >= _Tp(1))  |
201 | return std::numeric_limits<_Tp>::quiet_NaN();  |
202 | else  |
203 | return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));  |
204 | }  |
205 |   |
206 |   |
207 | /**  |
208 | * @brief Return the incomplete elliptic integral of the first kind  |
209 | * @f$ F(k,\phi) @f$ using the Carlson formulation.  |
210 | *   |
211 | * The incomplete elliptic integral of the first kind is defined as  |
212 | * @f[  |
213 | * F(k,\phi) = \int_0^{\phi}\frac{d\theta}  |
214 | * {\sqrt{1 - k^2 sin^2\theta}}  |
215 | * @f]  |
216 | *   |
217 | * @param __k The argument of the elliptic function.  |
218 | * @param __phi The integral limit argument of the elliptic function.  |
219 | * @return The elliptic function of the first kind.  |
220 | */  |
221 | template<typename _Tp>  |
222 | _Tp  |
223 | __ellint_1(_Tp __k, _Tp __phi)  |
224 | {  |
225 |   |
226 | if (__isnan(__k) || __isnan(__phi))  |
227 | return std::numeric_limits<_Tp>::quiet_NaN();  |
228 | else if (std::abs(__k) > _Tp(1))  |
229 | std::__throw_domain_error(__N("Bad argument in __ellint_1." ));  |
230 | else  |
231 | {  |
232 | // Reduce phi to -pi/2 < phi < +pi/2.  |
233 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()  |
234 | + _Tp(0.5L));  |
235 | const _Tp __phi_red = __phi  |
236 | - __n * __numeric_constants<_Tp>::__pi();  |
237 |   |
238 | const _Tp __s = std::sin(__phi_red);  |
239 | const _Tp __c = std::cos(__phi_red);  |
240 |   |
241 | const _Tp __F = __s  |
242 | * __ellint_rf(__c * __c,  |
243 | _Tp(1) - __k * __k * __s * __s, _Tp(1));  |
244 |   |
245 | if (__n == 0)  |
246 | return __F;  |
247 | else  |
248 | return __F + _Tp(2) * __n * __comp_ellint_1(__k);  |
249 | }  |
250 | }  |
251 |   |
252 |   |
253 | /**  |
254 | * @brief Return the complete elliptic integral of the second kind  |
255 | * @f$ E(k) @f$ by series expansion.  |
256 | *   |
257 | * The complete elliptic integral of the second kind is defined as  |
258 | * @f[  |
259 | * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}  |
260 | * @f]  |
261 | *   |
262 | * This routine is not bad as long as |k| is somewhat smaller than 1  |
263 | * but is not is good as the Carlson elliptic integral formulation.  |
264 | *   |
265 | * @param __k The argument of the complete elliptic function.  |
266 | * @return The complete elliptic function of the second kind.  |
267 | */  |
268 | template<typename _Tp>  |
269 | _Tp  |
270 | __comp_ellint_2_series(_Tp __k)  |
271 | {  |
272 |   |
273 | const _Tp __kk = __k * __k;  |
274 |   |
275 | _Tp __term = __kk;  |
276 | _Tp __sum = __term;  |
277 |   |
278 | const unsigned int __max_iter = 1000;  |
279 | for (unsigned int __i = 2; __i < __max_iter; ++__i)  |
280 | {  |
281 | const _Tp __i2m = 2 * __i - 1;  |
282 | const _Tp __i2 = 2 * __i;  |
283 | __term *= __i2m * __i2m * __kk / (__i2 * __i2);  |
284 | if (__term < std::numeric_limits<_Tp>::epsilon())  |
285 | break;  |
286 | __sum += __term / __i2m;  |
287 | }  |
288 |   |
289 | return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);  |
290 | }  |
291 |   |
292 |   |
293 | /**  |
294 | * @brief Return the Carlson elliptic function of the second kind  |
295 | * @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where  |
296 | * @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function  |
297 | * of the third kind.  |
298 | *   |
299 | * The Carlson elliptic function of the second kind is defined by:  |
300 | * @f[  |
301 | * R_D(x,y,z) = \frac{3}{2} \int_0^\infty  |
302 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}  |
303 | * @f]  |
304 | *  |
305 | * Based on Carlson's algorithms:  |
306 | * - B. C. Carlson Numer. Math. 33, 1 (1979)  |
307 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977)  |
308 | * - Numerical Recipes in C, 2nd ed, pp. 261-269,  |
309 | * by Press, Teukolsky, Vetterling, Flannery (1992)  |
310 | *  |
311 | * @param __x The first of two symmetric arguments.  |
312 | * @param __y The second of two symmetric arguments.  |
313 | * @param __z The third argument.  |
314 | * @return The Carlson elliptic function of the second kind.  |
315 | */  |
316 | template<typename _Tp>  |
317 | _Tp  |
318 | __ellint_rd(_Tp __x, _Tp __y, _Tp __z)  |
319 | {  |
320 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();  |
321 | const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));  |
322 | const _Tp __min = std::numeric_limits<_Tp>::min();  |
323 | const _Tp __max = std::numeric_limits<_Tp>::max();  |
324 | const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));  |
325 | const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));  |
326 |   |
327 | if (__x < _Tp(0) || __y < _Tp(0))  |
328 | std::__throw_domain_error(__N("Argument less than zero "   |
329 | "in __ellint_rd." ));  |
330 | else if (__x + __y < __lolim || __z < __lolim)  |
331 | std::__throw_domain_error(__N("Argument too small "   |
332 | "in __ellint_rd." ));  |
333 | else  |
334 | {  |
335 | const _Tp __c0 = _Tp(1) / _Tp(4);  |
336 | const _Tp __c1 = _Tp(3) / _Tp(14);  |
337 | const _Tp __c2 = _Tp(1) / _Tp(6);  |
338 | const _Tp __c3 = _Tp(9) / _Tp(22);  |
339 | const _Tp __c4 = _Tp(3) / _Tp(26);  |
340 |   |
341 | _Tp __xn = __x;  |
342 | _Tp __yn = __y;  |
343 | _Tp __zn = __z;  |
344 | _Tp __sigma = _Tp(0);  |
345 | _Tp __power4 = _Tp(1);  |
346 |   |
347 | _Tp __mu;  |
348 | _Tp __xndev, __yndev, __zndev;  |
349 |   |
350 | const unsigned int __max_iter = 100;  |
351 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)  |
352 | {  |
353 | __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);  |
354 | __xndev = (__mu - __xn) / __mu;  |
355 | __yndev = (__mu - __yn) / __mu;  |
356 | __zndev = (__mu - __zn) / __mu;  |
357 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));  |
358 | __epsilon = std::max(__epsilon, std::abs(__zndev));  |
359 | if (__epsilon < __errtol)  |
360 | break;  |
361 | _Tp __xnroot = std::sqrt(__xn);  |
362 | _Tp __ynroot = std::sqrt(__yn);  |
363 | _Tp __znroot = std::sqrt(__zn);  |
364 | _Tp __lambda = __xnroot * (__ynroot + __znroot)  |
365 | + __ynroot * __znroot;  |
366 | __sigma += __power4 / (__znroot * (__zn + __lambda));  |
367 | __power4 *= __c0;  |
368 | __xn = __c0 * (__xn + __lambda);  |
369 | __yn = __c0 * (__yn + __lambda);  |
370 | __zn = __c0 * (__zn + __lambda);  |
371 | }  |
372 |   |
373 | // Note: __ea is an SPU badname.  |
374 | _Tp __eaa = __xndev * __yndev;  |
375 | _Tp __eb = __zndev * __zndev;  |
376 | _Tp __ec = __eaa - __eb;  |
377 | _Tp __ed = __eaa - _Tp(6) * __eb;  |
378 | _Tp __ef = __ed + __ec + __ec;  |
379 | _Tp __s1 = __ed * (-__c1 + __c3 * __ed  |
380 | / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef  |
381 | / _Tp(2));  |
382 | _Tp __s2 = __zndev  |
383 | * (__c2 * __ef  |
384 | + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));  |
385 |   |
386 | return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)  |
387 | / (__mu * std::sqrt(__mu));  |
388 | }  |
389 | }  |
390 |   |
391 |   |
392 | /**  |
393 | * @brief Return the complete elliptic integral of the second kind  |
394 | * @f$ E(k) @f$ using the Carlson formulation.  |
395 | *   |
396 | * The complete elliptic integral of the second kind is defined as  |
397 | * @f[  |
398 | * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}  |
399 | * @f]  |
400 | *   |
401 | * @param __k The argument of the complete elliptic function.  |
402 | * @return The complete elliptic function of the second kind.  |
403 | */  |
404 | template<typename _Tp>  |
405 | _Tp  |
406 | __comp_ellint_2(_Tp __k)  |
407 | {  |
408 |   |
409 | if (__isnan(__k))  |
410 | return std::numeric_limits<_Tp>::quiet_NaN();  |
411 | else if (std::abs(__k) == 1)  |
412 | return _Tp(1);  |
413 | else if (std::abs(__k) > _Tp(1))  |
414 | std::__throw_domain_error(__N("Bad argument in __comp_ellint_2." ));  |
415 | else  |
416 | {  |
417 | const _Tp __kk = __k * __k;  |
418 |   |
419 | return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))  |
420 | - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);  |
421 | }  |
422 | }  |
423 |   |
424 |   |
425 | /**  |
426 | * @brief Return the incomplete elliptic integral of the second kind  |
427 | * @f$ E(k,\phi) @f$ using the Carlson formulation.  |
428 | *   |
429 | * The incomplete elliptic integral of the second kind is defined as  |
430 | * @f[  |
431 | * E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}  |
432 | * @f]  |
433 | *   |
434 | * @param __k The argument of the elliptic function.  |
435 | * @param __phi The integral limit argument of the elliptic function.  |
436 | * @return The elliptic function of the second kind.  |
437 | */  |
438 | template<typename _Tp>  |
439 | _Tp  |
440 | __ellint_2(_Tp __k, _Tp __phi)  |
441 | {  |
442 |   |
443 | if (__isnan(__k) || __isnan(__phi))  |
444 | return std::numeric_limits<_Tp>::quiet_NaN();  |
445 | else if (std::abs(__k) > _Tp(1))  |
446 | std::__throw_domain_error(__N("Bad argument in __ellint_2." ));  |
447 | else  |
448 | {  |
449 | // Reduce phi to -pi/2 < phi < +pi/2.  |
450 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()  |
451 | + _Tp(0.5L));  |
452 | const _Tp __phi_red = __phi  |
453 | - __n * __numeric_constants<_Tp>::__pi();  |
454 |   |
455 | const _Tp __kk = __k * __k;  |
456 | const _Tp __s = std::sin(__phi_red);  |
457 | const _Tp __ss = __s * __s;  |
458 | const _Tp __sss = __ss * __s;  |
459 | const _Tp __c = std::cos(__phi_red);  |
460 | const _Tp __cc = __c * __c;  |
461 |   |
462 | const _Tp __E = __s  |
463 | * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))  |
464 | - __kk * __sss  |
465 | * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))  |
466 | / _Tp(3);  |
467 |   |
468 | if (__n == 0)  |
469 | return __E;  |
470 | else  |
471 | return __E + _Tp(2) * __n * __comp_ellint_2(__k);  |
472 | }  |
473 | }  |
474 |   |
475 |   |
476 | /**  |
477 | * @brief Return the Carlson elliptic function  |
478 | * @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$  |
479 | * is the Carlson elliptic function of the first kind.  |
480 | *   |
481 | * The Carlson elliptic function is defined by:  |
482 | * @f[  |
483 | * R_C(x,y) = \frac{1}{2} \int_0^\infty  |
484 | * \frac{dt}{(t + x)^{1/2}(t + y)}  |
485 | * @f]  |
486 | *  |
487 | * Based on Carlson's algorithms:  |
488 | * - B. C. Carlson Numer. Math. 33, 1 (1979)  |
489 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977)  |
490 | * - Numerical Recipes in C, 2nd ed, pp. 261-269,  |
491 | * by Press, Teukolsky, Vetterling, Flannery (1992)  |
492 | *  |
493 | * @param __x The first argument.  |
494 | * @param __y The second argument.  |
495 | * @return The Carlson elliptic function.  |
496 | */  |
497 | template<typename _Tp>  |
498 | _Tp  |
499 | __ellint_rc(_Tp __x, _Tp __y)  |
500 | {  |
501 | const _Tp __min = std::numeric_limits<_Tp>::min();  |
502 | const _Tp __max = std::numeric_limits<_Tp>::max();  |
503 | const _Tp __lolim = _Tp(5) * __min;  |
504 | const _Tp __uplim = __max / _Tp(5);  |
505 |   |
506 | if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)  |
507 | std::__throw_domain_error(__N("Argument less than zero "   |
508 | "in __ellint_rc." ));  |
509 | else  |
510 | {  |
511 | const _Tp __c0 = _Tp(1) / _Tp(4);  |
512 | const _Tp __c1 = _Tp(1) / _Tp(7);  |
513 | const _Tp __c2 = _Tp(9) / _Tp(22);  |
514 | const _Tp __c3 = _Tp(3) / _Tp(10);  |
515 | const _Tp __c4 = _Tp(3) / _Tp(8);  |
516 |   |
517 | _Tp __xn = __x;  |
518 | _Tp __yn = __y;  |
519 |   |
520 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();  |
521 | const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));  |
522 | _Tp __mu;  |
523 | _Tp __sn;  |
524 |   |
525 | const unsigned int __max_iter = 100;  |
526 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)  |
527 | {  |
528 | __mu = (__xn + _Tp(2) * __yn) / _Tp(3);  |
529 | __sn = (__yn + __mu) / __mu - _Tp(2);  |
530 | if (std::abs(__sn) < __errtol)  |
531 | break;  |
532 | const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)  |
533 | + __yn;  |
534 | __xn = __c0 * (__xn + __lambda);  |
535 | __yn = __c0 * (__yn + __lambda);  |
536 | }  |
537 |   |
538 | _Tp __s = __sn * __sn  |
539 | * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));  |
540 |   |
541 | return (_Tp(1) + __s) / std::sqrt(__mu);  |
542 | }  |
543 | }  |
544 |   |
545 |   |
546 | /**  |
547 | * @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$  |
548 | * of the third kind.  |
549 | *   |
550 | * The Carlson elliptic function of the third kind is defined by:  |
551 | * @f[  |
552 | * R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty  |
553 | * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}  |
554 | * @f]  |
555 | *  |
556 | * Based on Carlson's algorithms:  |
557 | * - B. C. Carlson Numer. Math. 33, 1 (1979)  |
558 | * - B. C. Carlson, Special Functions of Applied Mathematics (1977)  |
559 | * - Numerical Recipes in C, 2nd ed, pp. 261-269,  |
560 | * by Press, Teukolsky, Vetterling, Flannery (1992)  |
561 | *  |
562 | * @param __x The first of three symmetric arguments.  |
563 | * @param __y The second of three symmetric arguments.  |
564 | * @param __z The third of three symmetric arguments.  |
565 | * @param __p The fourth argument.  |
566 | * @return The Carlson elliptic function of the fourth kind.  |
567 | */  |
568 | template<typename _Tp>  |
569 | _Tp  |
570 | __ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p)  |
571 | {  |
572 | const _Tp __min = std::numeric_limits<_Tp>::min();  |
573 | const _Tp __max = std::numeric_limits<_Tp>::max();  |
574 | const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));  |
575 | const _Tp __uplim = _Tp(0.3L)  |
576 | * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));  |
577 |   |
578 | if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))  |
579 | std::__throw_domain_error(__N("Argument less than zero "   |
580 | "in __ellint_rj." ));  |
581 | else if (__x + __y < __lolim || __x + __z < __lolim  |
582 | || __y + __z < __lolim || __p < __lolim)  |
583 | std::__throw_domain_error(__N("Argument too small "   |
584 | "in __ellint_rj" ));  |
585 | else  |
586 | {  |
587 | const _Tp __c0 = _Tp(1) / _Tp(4);  |
588 | const _Tp __c1 = _Tp(3) / _Tp(14);  |
589 | const _Tp __c2 = _Tp(1) / _Tp(3);  |
590 | const _Tp __c3 = _Tp(3) / _Tp(22);  |
591 | const _Tp __c4 = _Tp(3) / _Tp(26);  |
592 |   |
593 | _Tp __xn = __x;  |
594 | _Tp __yn = __y;  |
595 | _Tp __zn = __z;  |
596 | _Tp __pn = __p;  |
597 | _Tp __sigma = _Tp(0);  |
598 | _Tp __power4 = _Tp(1);  |
599 |   |
600 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();  |
601 | const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));  |
602 |   |
603 | _Tp __lambda, __mu;  |
604 | _Tp __xndev, __yndev, __zndev, __pndev;  |
605 |   |
606 | const unsigned int __max_iter = 100;  |
607 | for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)  |
608 | {  |
609 | __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);  |
610 | __xndev = (__mu - __xn) / __mu;  |
611 | __yndev = (__mu - __yn) / __mu;  |
612 | __zndev = (__mu - __zn) / __mu;  |
613 | __pndev = (__mu - __pn) / __mu;  |
614 | _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));  |
615 | __epsilon = std::max(__epsilon, std::abs(__zndev));  |
616 | __epsilon = std::max(__epsilon, std::abs(__pndev));  |
617 | if (__epsilon < __errtol)  |
618 | break;  |
619 | const _Tp __xnroot = std::sqrt(__xn);  |
620 | const _Tp __ynroot = std::sqrt(__yn);  |
621 | const _Tp __znroot = std::sqrt(__zn);  |
622 | const _Tp __lambda = __xnroot * (__ynroot + __znroot)  |
623 | + __ynroot * __znroot;  |
624 | const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)  |
625 | + __xnroot * __ynroot * __znroot;  |
626 | const _Tp __alpha2 = __alpha1 * __alpha1;  |
627 | const _Tp __beta = __pn * (__pn + __lambda)  |
628 | * (__pn + __lambda);  |
629 | __sigma += __power4 * __ellint_rc(__alpha2, __beta);  |
630 | __power4 *= __c0;  |
631 | __xn = __c0 * (__xn + __lambda);  |
632 | __yn = __c0 * (__yn + __lambda);  |
633 | __zn = __c0 * (__zn + __lambda);  |
634 | __pn = __c0 * (__pn + __lambda);  |
635 | }  |
636 |   |
637 | // Note: __ea is an SPU badname.  |
638 | _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;  |
639 | _Tp __eb = __xndev * __yndev * __zndev;  |
640 | _Tp __ec = __pndev * __pndev;  |
641 | _Tp __e2 = __eaa - _Tp(3) * __ec;  |
642 | _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);  |
643 | _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)  |
644 | - _Tp(3) * __c4 * __e3 / _Tp(2));  |
645 | _Tp __s2 = __eb * (__c2 / _Tp(2)  |
646 | + __pndev * (-__c3 - __c3 + __pndev * __c4));  |
647 | _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)  |
648 | - __c2 * __pndev * __ec;  |
649 |   |
650 | return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)  |
651 | / (__mu * std::sqrt(__mu));  |
652 | }  |
653 | }  |
654 |   |
655 |   |
656 | /**  |
657 | * @brief Return the complete elliptic integral of the third kind  |
658 | * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the  |
659 | * Carlson formulation.  |
660 | *   |
661 | * The complete elliptic integral of the third kind is defined as  |
662 | * @f[  |
663 | * \Pi(k,\nu) = \int_0^{\pi/2}  |
664 | * \frac{d\theta}  |
665 | * {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}  |
666 | * @f]  |
667 | *   |
668 | * @param __k The argument of the elliptic function.  |
669 | * @param __nu The second argument of the elliptic function.  |
670 | * @return The complete elliptic function of the third kind.  |
671 | */  |
672 | template<typename _Tp>  |
673 | _Tp  |
674 | __comp_ellint_3(_Tp __k, _Tp __nu)  |
675 | {  |
676 |   |
677 | if (__isnan(__k) || __isnan(__nu))  |
678 | return std::numeric_limits<_Tp>::quiet_NaN();  |
679 | else if (__nu == _Tp(1))  |
680 | return std::numeric_limits<_Tp>::infinity();  |
681 | else if (std::abs(__k) > _Tp(1))  |
682 | std::__throw_domain_error(__N("Bad argument in __comp_ellint_3." ));  |
683 | else  |
684 | {  |
685 | const _Tp __kk = __k * __k;  |
686 |   |
687 | return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))  |
688 | + __nu  |
689 | * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) - __nu)  |
690 | / _Tp(3);  |
691 | }  |
692 | }  |
693 |   |
694 |   |
695 | /**  |
696 | * @brief Return the incomplete elliptic integral of the third kind  |
697 | * @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.  |
698 | *   |
699 | * The incomplete elliptic integral of the third kind is defined as  |
700 | * @f[  |
701 | * \Pi(k,\nu,\phi) = \int_0^{\phi}  |
702 | * \frac{d\theta}  |
703 | * {(1 - \nu \sin^2\theta)  |
704 | * \sqrt{1 - k^2 \sin^2\theta}}  |
705 | * @f]  |
706 | *   |
707 | * @param __k The argument of the elliptic function.  |
708 | * @param __nu The second argument of the elliptic function.  |
709 | * @param __phi The integral limit argument of the elliptic function.  |
710 | * @return The elliptic function of the third kind.  |
711 | */  |
712 | template<typename _Tp>  |
713 | _Tp  |
714 | __ellint_3(_Tp __k, _Tp __nu, _Tp __phi)  |
715 | {  |
716 |   |
717 | if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))  |
718 | return std::numeric_limits<_Tp>::quiet_NaN();  |
719 | else if (std::abs(__k) > _Tp(1))  |
720 | std::__throw_domain_error(__N("Bad argument in __ellint_3." ));  |
721 | else  |
722 | {  |
723 | // Reduce phi to -pi/2 < phi < +pi/2.  |
724 | const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()  |
725 | + _Tp(0.5L));  |
726 | const _Tp __phi_red = __phi  |
727 | - __n * __numeric_constants<_Tp>::__pi();  |
728 |   |
729 | const _Tp __kk = __k * __k;  |
730 | const _Tp __s = std::sin(__phi_red);  |
731 | const _Tp __ss = __s * __s;  |
732 | const _Tp __sss = __ss * __s;  |
733 | const _Tp __c = std::cos(__phi_red);  |
734 | const _Tp __cc = __c * __c;  |
735 |   |
736 | const _Tp __Pi = __s  |
737 | * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))  |
738 | + __nu * __sss  |
739 | * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),  |
740 | _Tp(1) - __nu * __ss) / _Tp(3);  |
741 |   |
742 | if (__n == 0)  |
743 | return __Pi;  |
744 | else  |
745 | return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);  |
746 | }  |
747 | }  |
748 | } // namespace __detail  |
749 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)  |
750 | } // namespace tr1  |
751 | #endif  |
752 |   |
753 | _GLIBCXX_END_NAMESPACE_VERSION  |
754 | }  |
755 |   |
756 | #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC  |
757 |   |
758 | |