1 | // Special functions -*- C++ -*-  |
2 |   |
3 | // Copyright (C) 2006-2019 Free Software Foundation, Inc.  |
4 | //  |
5 | // This file is part of the GNU ISO C++ Library. This library is free  |
6 | // software; you can redistribute it and/or modify it under the  |
7 | // terms of the GNU General Public License as published by the  |
8 | // Free Software Foundation; either version 3, or (at your option)  |
9 | // any later version.  |
10 | //  |
11 | // This library is distributed in the hope that it will be useful,  |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of  |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  |
14 | // GNU General Public License for more details.  |
15 | //  |
16 | // Under Section 7 of GPL version 3, you are granted additional  |
17 | // permissions described in the GCC Runtime Library Exception, version  |
18 | // 3.1, as published by the Free Software Foundation.  |
19 |   |
20 | // You should have received a copy of the GNU General Public License and  |
21 | // a copy of the GCC Runtime Library Exception along with this program;  |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see  |
23 | // <http://www.gnu.org/licenses/>.  |
24 |   |
25 | /** @file tr1/exp_integral.tcc  |
26 | * This is an internal header file, included by other library headers.  |
27 | * Do not attempt to use it directly. @headername{tr1/cmath}  |
28 | */  |
29 |   |
30 | //  |
31 | // ISO C++ 14882 TR1: 5.2 Special functions  |
32 | //  |
33 |   |
34 | // Written by Edward Smith-Rowland based on:  |
35 | //  |
36 | // (1) Handbook of Mathematical Functions,  |
37 | // Ed. by Milton Abramowitz and Irene A. Stegun,  |
38 | // Dover Publications, New-York, Section 5, pp. 228-251.  |
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl  |
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,  |
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),  |
42 | // 2nd ed, pp. 222-225.  |
43 | //  |
44 |   |
45 | #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC  |
46 | #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1  |
47 |   |
48 | #include <tr1/special_function_util.h>  |
49 |   |
50 | namespace std _GLIBCXX_VISIBILITY(default)  |
51 | {  |
52 | _GLIBCXX_BEGIN_NAMESPACE_VERSION  |
53 |   |
54 | #if _GLIBCXX_USE_STD_SPEC_FUNCS  |
55 | #elif defined(_GLIBCXX_TR1_CMATH)  |
56 | namespace tr1  |
57 | {  |
58 | #else  |
59 | # error do not include this header directly, use <cmath> or <tr1/cmath>  |
60 | #endif  |
61 | // [5.2] Special functions  |
62 |   |
63 | // Implementation-space details.  |
64 | namespace __detail  |
65 | {  |
66 | template<typename _Tp> _Tp __expint_E1(_Tp);  |
67 |   |
68 | /**  |
69 | * @brief Return the exponential integral @f$ E_1(x) @f$  |
70 | * by series summation. This should be good  |
71 | * for @f$ x < 1 @f$.  |
72 | *   |
73 | * The exponential integral is given by  |
74 | * \f[  |
75 | * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt  |
76 | * \f]  |
77 | *   |
78 | * @param __x The argument of the exponential integral function.  |
79 | * @return The exponential integral.  |
80 | */  |
81 | template<typename _Tp>  |
82 | _Tp  |
83 | __expint_E1_series(_Tp __x)  |
84 | {  |
85 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();  |
86 | _Tp __term = _Tp(1);  |
87 | _Tp __esum = _Tp(0);  |
88 | _Tp __osum = _Tp(0);  |
89 | const unsigned int __max_iter = 1000;  |
90 | for (unsigned int __i = 1; __i < __max_iter; ++__i)  |
91 | {  |
92 | __term *= - __x / __i;  |
93 | if (std::abs(__term) < __eps)  |
94 | break;  |
95 | if (__term >= _Tp(0))  |
96 | __esum += __term / __i;  |
97 | else  |
98 | __osum += __term / __i;  |
99 | }  |
100 |   |
101 | return - __esum - __osum  |
102 | - __numeric_constants<_Tp>::__gamma_e() - std::log(__x);  |
103 | }  |
104 |   |
105 |   |
106 | /**  |
107 | * @brief Return the exponential integral @f$ E_1(x) @f$  |
108 | * by asymptotic expansion.  |
109 | *   |
110 | * The exponential integral is given by  |
111 | * \f[  |
112 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt  |
113 | * \f]  |
114 | *   |
115 | * @param __x The argument of the exponential integral function.  |
116 | * @return The exponential integral.  |
117 | */  |
118 | template<typename _Tp>  |
119 | _Tp  |
120 | __expint_E1_asymp(_Tp __x)  |
121 | {  |
122 | _Tp __term = _Tp(1);  |
123 | _Tp __esum = _Tp(1);  |
124 | _Tp __osum = _Tp(0);  |
125 | const unsigned int __max_iter = 1000;  |
126 | for (unsigned int __i = 1; __i < __max_iter; ++__i)  |
127 | {  |
128 | _Tp __prev = __term;  |
129 | __term *= - __i / __x;  |
130 | if (std::abs(__term) > std::abs(__prev))  |
131 | break;  |
132 | if (__term >= _Tp(0))  |
133 | __esum += __term;  |
134 | else  |
135 | __osum += __term;  |
136 | }  |
137 |   |
138 | return std::exp(- __x) * (__esum + __osum) / __x;  |
139 | }  |
140 |   |
141 |   |
142 | /**  |
143 | * @brief Return the exponential integral @f$ E_n(x) @f$  |
144 | * by series summation.  |
145 | *   |
146 | * The exponential integral is given by  |
147 | * \f[  |
148 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt  |
149 | * \f]  |
150 | *   |
151 | * @param __n The order of the exponential integral function.  |
152 | * @param __x The argument of the exponential integral function.  |
153 | * @return The exponential integral.  |
154 | */  |
155 | template<typename _Tp>  |
156 | _Tp  |
157 | __expint_En_series(unsigned int __n, _Tp __x)  |
158 | {  |
159 | const unsigned int __max_iter = 1000;  |
160 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();  |
161 | const int __nm1 = __n - 1;  |
162 | _Tp __ans = (__nm1 != 0  |
163 | ? _Tp(1) / __nm1 : -std::log(__x)  |
164 | - __numeric_constants<_Tp>::__gamma_e());  |
165 | _Tp __fact = _Tp(1);  |
166 | for (int __i = 1; __i <= __max_iter; ++__i)  |
167 | {  |
168 | __fact *= -__x / _Tp(__i);  |
169 | _Tp __del;  |
170 | if ( __i != __nm1 )  |
171 | __del = -__fact / _Tp(__i - __nm1);  |
172 | else  |
173 | {  |
174 | _Tp __psi = -__numeric_constants<_Tp>::gamma_e();  |
175 | for (int __ii = 1; __ii <= __nm1; ++__ii)  |
176 | __psi += _Tp(1) / _Tp(__ii);  |
177 | __del = __fact * (__psi - std::log(__x));   |
178 | }  |
179 | __ans += __del;  |
180 | if (std::abs(__del) < __eps * std::abs(__ans))  |
181 | return __ans;  |
182 | }  |
183 | std::__throw_runtime_error(__N("Series summation failed "   |
184 | "in __expint_En_series." ));  |
185 | }  |
186 |   |
187 |   |
188 | /**  |
189 | * @brief Return the exponential integral @f$ E_n(x) @f$  |
190 | * by continued fractions.  |
191 | *   |
192 | * The exponential integral is given by  |
193 | * \f[  |
194 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt  |
195 | * \f]  |
196 | *   |
197 | * @param __n The order of the exponential integral function.  |
198 | * @param __x The argument of the exponential integral function.  |
199 | * @return The exponential integral.  |
200 | */  |
201 | template<typename _Tp>  |
202 | _Tp  |
203 | __expint_En_cont_frac(unsigned int __n, _Tp __x)  |
204 | {  |
205 | const unsigned int __max_iter = 1000;  |
206 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();  |
207 | const _Tp __fp_min = std::numeric_limits<_Tp>::min();  |
208 | const int __nm1 = __n - 1;  |
209 | _Tp __b = __x + _Tp(__n);  |
210 | _Tp __c = _Tp(1) / __fp_min;  |
211 | _Tp __d = _Tp(1) / __b;  |
212 | _Tp __h = __d;  |
213 | for ( unsigned int __i = 1; __i <= __max_iter; ++__i )  |
214 | {  |
215 | _Tp __a = -_Tp(__i * (__nm1 + __i));  |
216 | __b += _Tp(2);  |
217 | __d = _Tp(1) / (__a * __d + __b);  |
218 | __c = __b + __a / __c;  |
219 | const _Tp __del = __c * __d;  |
220 | __h *= __del;  |
221 | if (std::abs(__del - _Tp(1)) < __eps)  |
222 | {  |
223 | const _Tp __ans = __h * std::exp(-__x);  |
224 | return __ans;  |
225 | }  |
226 | }  |
227 | std::__throw_runtime_error(__N("Continued fraction failed "   |
228 | "in __expint_En_cont_frac." ));  |
229 | }  |
230 |   |
231 |   |
232 | /**  |
233 | * @brief Return the exponential integral @f$ E_n(x) @f$  |
234 | * by recursion. Use upward recursion for @f$ x < n @f$  |
235 | * and downward recursion (Miller's algorithm) otherwise.  |
236 | *   |
237 | * The exponential integral is given by  |
238 | * \f[  |
239 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt  |
240 | * \f]  |
241 | *   |
242 | * @param __n The order of the exponential integral function.  |
243 | * @param __x The argument of the exponential integral function.  |
244 | * @return The exponential integral.  |
245 | */  |
246 | template<typename _Tp>  |
247 | _Tp  |
248 | __expint_En_recursion(unsigned int __n, _Tp __x)  |
249 | {  |
250 | _Tp __En;  |
251 | _Tp __E1 = __expint_E1(__x);  |
252 | if (__x < _Tp(__n))  |
253 | {  |
254 | // Forward recursion is stable only for n < x.  |
255 | __En = __E1;  |
256 | for (unsigned int __j = 2; __j < __n; ++__j)  |
257 | __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);  |
258 | }  |
259 | else  |
260 | {  |
261 | // Backward recursion is stable only for n >= x.  |
262 | __En = _Tp(1);  |
263 | const int __N = __n + 20; // TODO: Check this starting number.  |
264 | _Tp __save = _Tp(0);  |
265 | for (int __j = __N; __j > 0; --__j)  |
266 | {  |
267 | __En = (std::exp(-__x) - __j * __En) / __x;  |
268 | if (__j == __n)  |
269 | __save = __En;  |
270 | }  |
271 | _Tp __norm = __En / __E1;  |
272 | __En /= __norm;  |
273 | }  |
274 |   |
275 | return __En;  |
276 | }  |
277 |   |
278 | /**  |
279 | * @brief Return the exponential integral @f$ Ei(x) @f$  |
280 | * by series summation.  |
281 | *   |
282 | * The exponential integral is given by  |
283 | * \f[  |
284 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt  |
285 | * \f]  |
286 | *   |
287 | * @param __x The argument of the exponential integral function.  |
288 | * @return The exponential integral.  |
289 | */  |
290 | template<typename _Tp>  |
291 | _Tp  |
292 | __expint_Ei_series(_Tp __x)  |
293 | {  |
294 | _Tp __term = _Tp(1);  |
295 | _Tp __sum = _Tp(0);  |
296 | const unsigned int __max_iter = 1000;  |
297 | for (unsigned int __i = 1; __i < __max_iter; ++__i)  |
298 | {  |
299 | __term *= __x / __i;  |
300 | __sum += __term / __i;  |
301 | if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)  |
302 | break;  |
303 | }  |
304 |   |
305 | return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);  |
306 | }  |
307 |   |
308 |   |
309 | /**  |
310 | * @brief Return the exponential integral @f$ Ei(x) @f$  |
311 | * by asymptotic expansion.  |
312 | *   |
313 | * The exponential integral is given by  |
314 | * \f[  |
315 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt  |
316 | * \f]  |
317 | *   |
318 | * @param __x The argument of the exponential integral function.  |
319 | * @return The exponential integral.  |
320 | */  |
321 | template<typename _Tp>  |
322 | _Tp  |
323 | __expint_Ei_asymp(_Tp __x)  |
324 | {  |
325 | _Tp __term = _Tp(1);  |
326 | _Tp __sum = _Tp(1);  |
327 | const unsigned int __max_iter = 1000;  |
328 | for (unsigned int __i = 1; __i < __max_iter; ++__i)  |
329 | {  |
330 | _Tp __prev = __term;  |
331 | __term *= __i / __x;  |
332 | if (__term < std::numeric_limits<_Tp>::epsilon())  |
333 | break;  |
334 | if (__term >= __prev)  |
335 | break;  |
336 | __sum += __term;  |
337 | }  |
338 |   |
339 | return std::exp(__x) * __sum / __x;  |
340 | }  |
341 |   |
342 |   |
343 | /**  |
344 | * @brief Return the exponential integral @f$ Ei(x) @f$.  |
345 | *   |
346 | * The exponential integral is given by  |
347 | * \f[  |
348 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt  |
349 | * \f]  |
350 | *   |
351 | * @param __x The argument of the exponential integral function.  |
352 | * @return The exponential integral.  |
353 | */  |
354 | template<typename _Tp>  |
355 | _Tp  |
356 | __expint_Ei(_Tp __x)  |
357 | {  |
358 | if (__x < _Tp(0))  |
359 | return -__expint_E1(-__x);  |
360 | else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))  |
361 | return __expint_Ei_series(__x);  |
362 | else  |
363 | return __expint_Ei_asymp(__x);  |
364 | }  |
365 |   |
366 |   |
367 | /**  |
368 | * @brief Return the exponential integral @f$ E_1(x) @f$.  |
369 | *   |
370 | * The exponential integral is given by  |
371 | * \f[  |
372 | * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt  |
373 | * \f]  |
374 | *   |
375 | * @param __x The argument of the exponential integral function.  |
376 | * @return The exponential integral.  |
377 | */  |
378 | template<typename _Tp>  |
379 | _Tp  |
380 | __expint_E1(_Tp __x)  |
381 | {  |
382 | if (__x < _Tp(0))  |
383 | return -__expint_Ei(-__x);  |
384 | else if (__x < _Tp(1))  |
385 | return __expint_E1_series(__x);  |
386 | else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point.  |
387 | return __expint_En_cont_frac(1, __x);  |
388 | else  |
389 | return __expint_E1_asymp(__x);  |
390 | }  |
391 |   |
392 |   |
393 | /**  |
394 | * @brief Return the exponential integral @f$ E_n(x) @f$  |
395 | * for large argument.  |
396 | *   |
397 | * The exponential integral is given by  |
398 | * \f[  |
399 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt  |
400 | * \f]  |
401 | *   |
402 | * This is something of an extension.  |
403 | *   |
404 | * @param __n The order of the exponential integral function.  |
405 | * @param __x The argument of the exponential integral function.  |
406 | * @return The exponential integral.  |
407 | */  |
408 | template<typename _Tp>  |
409 | _Tp  |
410 | __expint_asymp(unsigned int __n, _Tp __x)  |
411 | {  |
412 | _Tp __term = _Tp(1);  |
413 | _Tp __sum = _Tp(1);  |
414 | for (unsigned int __i = 1; __i <= __n; ++__i)  |
415 | {  |
416 | _Tp __prev = __term;  |
417 | __term *= -(__n - __i + 1) / __x;  |
418 | if (std::abs(__term) > std::abs(__prev))  |
419 | break;  |
420 | __sum += __term;  |
421 | }  |
422 |   |
423 | return std::exp(-__x) * __sum / __x;  |
424 | }  |
425 |   |
426 |   |
427 | /**  |
428 | * @brief Return the exponential integral @f$ E_n(x) @f$  |
429 | * for large order.  |
430 | *   |
431 | * The exponential integral is given by  |
432 | * \f[  |
433 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt  |
434 | * \f]  |
435 | *   |
436 | * This is something of an extension.  |
437 | *   |
438 | * @param __n The order of the exponential integral function.  |
439 | * @param __x The argument of the exponential integral function.  |
440 | * @return The exponential integral.  |
441 | */  |
442 | template<typename _Tp>  |
443 | _Tp  |
444 | __expint_large_n(unsigned int __n, _Tp __x)  |
445 | {  |
446 | const _Tp __xpn = __x + __n;  |
447 | const _Tp __xpn2 = __xpn * __xpn;  |
448 | _Tp __term = _Tp(1);  |
449 | _Tp __sum = _Tp(1);  |
450 | for (unsigned int __i = 1; __i <= __n; ++__i)  |
451 | {  |
452 | _Tp __prev = __term;  |
453 | __term *= (__n - 2 * (__i - 1) * __x) / __xpn2;  |
454 | if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())  |
455 | break;  |
456 | __sum += __term;  |
457 | }  |
458 |   |
459 | return std::exp(-__x) * __sum / __xpn;  |
460 | }  |
461 |   |
462 |   |
463 | /**  |
464 | * @brief Return the exponential integral @f$ E_n(x) @f$.  |
465 | *   |
466 | * The exponential integral is given by  |
467 | * \f[  |
468 | * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt  |
469 | * \f]  |
470 | * This is something of an extension.  |
471 | *   |
472 | * @param __n The order of the exponential integral function.  |
473 | * @param __x The argument of the exponential integral function.  |
474 | * @return The exponential integral.  |
475 | */  |
476 | template<typename _Tp>  |
477 | _Tp  |
478 | __expint(unsigned int __n, _Tp __x)  |
479 | {  |
480 | // Return NaN on NaN input.  |
481 | if (__isnan(__x))  |
482 | return std::numeric_limits<_Tp>::quiet_NaN();  |
483 | else if (__n <= 1 && __x == _Tp(0))  |
484 | return std::numeric_limits<_Tp>::infinity();  |
485 | else  |
486 | {  |
487 | _Tp __E0 = std::exp(__x) / __x;  |
488 | if (__n == 0)  |
489 | return __E0;  |
490 |   |
491 | _Tp __E1 = __expint_E1(__x);  |
492 | if (__n == 1)  |
493 | return __E1;  |
494 |   |
495 | if (__x == _Tp(0))  |
496 | return _Tp(1) / static_cast<_Tp>(__n - 1);  |
497 |   |
498 | _Tp __En = __expint_En_recursion(__n, __x);  |
499 |   |
500 | return __En;  |
501 | }  |
502 | }  |
503 |   |
504 |   |
505 | /**  |
506 | * @brief Return the exponential integral @f$ Ei(x) @f$.  |
507 | *   |
508 | * The exponential integral is given by  |
509 | * \f[  |
510 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt  |
511 | * \f]  |
512 | *   |
513 | * @param __x The argument of the exponential integral function.  |
514 | * @return The exponential integral.  |
515 | */  |
516 | template<typename _Tp>  |
517 | inline _Tp  |
518 | __expint(_Tp __x)  |
519 | {  |
520 | if (__isnan(__x))  |
521 | return std::numeric_limits<_Tp>::quiet_NaN();  |
522 | else  |
523 | return __expint_Ei(__x);  |
524 | }  |
525 | } // namespace __detail  |
526 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)  |
527 | } // namespace tr1  |
528 | #endif  |
529 |   |
530 | _GLIBCXX_END_NAMESPACE_VERSION  |
531 | }  |
532 |   |
533 | #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC  |
534 | |