1 | // Special functions -*- C++ -*-  |
2 |   |
3 | // Copyright (C) 2006-2019 Free Software Foundation, Inc.  |
4 | //  |
5 | // This file is part of the GNU ISO C++ Library. This library is free  |
6 | // software; you can redistribute it and/or modify it under the  |
7 | // terms of the GNU General Public License as published by the  |
8 | // Free Software Foundation; either version 3, or (at your option)  |
9 | // any later version.  |
10 | //  |
11 | // This library is distributed in the hope that it will be useful,  |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of  |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  |
14 | // GNU General Public License for more details.  |
15 | //  |
16 | // Under Section 7 of GPL version 3, you are granted additional  |
17 | // permissions described in the GCC Runtime Library Exception, version  |
18 | // 3.1, as published by the Free Software Foundation.  |
19 |   |
20 | // You should have received a copy of the GNU General Public License and  |
21 | // a copy of the GCC Runtime Library Exception along with this program;  |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see  |
23 | // <http://www.gnu.org/licenses/>.  |
24 |   |
25 | /** @file tr1/legendre_function.tcc  |
26 | * This is an internal header file, included by other library headers.  |
27 | * Do not attempt to use it directly. @headername{tr1/cmath}  |
28 | */  |
29 |   |
30 | //  |
31 | // ISO C++ 14882 TR1: 5.2 Special functions  |
32 | //  |
33 |   |
34 | // Written by Edward Smith-Rowland based on:  |
35 | // (1) Handbook of Mathematical Functions,  |
36 | // ed. Milton Abramowitz and Irene A. Stegun,  |
37 | // Dover Publications,  |
38 | // Section 8, pp. 331-341  |
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl  |
40 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,  |
41 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),  |
42 | // 2nd ed, pp. 252-254  |
43 |   |
44 | #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC  |
45 | #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1  |
46 |   |
47 | #include <tr1/special_function_util.h>  |
48 |   |
49 | namespace std _GLIBCXX_VISIBILITY(default)  |
50 | {  |
51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION  |
52 |   |
53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS  |
54 | # define _GLIBCXX_MATH_NS ::std  |
55 | #elif defined(_GLIBCXX_TR1_CMATH)  |
56 | namespace tr1  |
57 | {  |
58 | # define _GLIBCXX_MATH_NS ::std::tr1  |
59 | #else  |
60 | # error do not include this header directly, use <cmath> or <tr1/cmath>  |
61 | #endif  |
62 | // [5.2] Special functions  |
63 |   |
64 | // Implementation-space details.  |
65 | namespace __detail  |
66 | {  |
67 | /**  |
68 | * @brief Return the Legendre polynomial by recursion on degree  |
69 | * @f$ l @f$.  |
70 | *   |
71 | * The Legendre function of @f$ l @f$ and @f$ x @f$,  |
72 | * @f$ P_l(x) @f$, is defined by:  |
73 | * @f[  |
74 | * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}  |
75 | * @f]  |
76 | *   |
77 | * @param l The degree of the Legendre polynomial. @f$l >= 0@f$.  |
78 | * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.  |
79 | */  |
80 | template<typename _Tp>  |
81 | _Tp  |
82 | __poly_legendre_p(unsigned int __l, _Tp __x)  |
83 | {  |
84 |   |
85 | if (__isnan(__x))  |
86 | return std::numeric_limits<_Tp>::quiet_NaN();  |
87 | else if (__x == +_Tp(1))  |
88 | return +_Tp(1);  |
89 | else if (__x == -_Tp(1))  |
90 | return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));  |
91 | else  |
92 | {  |
93 | _Tp __p_lm2 = _Tp(1);  |
94 | if (__l == 0)  |
95 | return __p_lm2;  |
96 |   |
97 | _Tp __p_lm1 = __x;  |
98 | if (__l == 1)  |
99 | return __p_lm1;  |
100 |   |
101 | _Tp __p_l = 0;  |
102 | for (unsigned int __ll = 2; __ll <= __l; ++__ll)  |
103 | {  |
104 | // This arrangement is supposed to be better for roundoff  |
105 | // protection, Arfken, 2nd Ed, Eq 12.17a.  |
106 | __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2  |
107 | - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);  |
108 | __p_lm2 = __p_lm1;  |
109 | __p_lm1 = __p_l;  |
110 | }  |
111 |   |
112 | return __p_l;  |
113 | }  |
114 | }  |
115 |   |
116 |   |
117 | /**  |
118 | * @brief Return the associated Legendre function by recursion  |
119 | * on @f$ l @f$.  |
120 | *   |
121 | * The associated Legendre function is derived from the Legendre function  |
122 | * @f$ P_l(x) @f$ by the Rodrigues formula:  |
123 | * @f[  |
124 | * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)  |
125 | * @f]  |
126 | * @note @f$ P_l^m(x) = 0 @f$ if @f$ m > l @f$.  |
127 | *   |
128 | * @param l The degree of the associated Legendre function.  |
129 | * @f$ l >= 0 @f$.  |
130 | * @param m The order of the associated Legendre function.  |
131 | * @param x The argument of the associated Legendre function.  |
132 | * @f$ |x| <= 1 @f$.  |
133 | * @param phase The phase of the associated Legendre function.  |
134 | * Use -1 for the Condon-Shortley phase convention.  |
135 | */  |
136 | template<typename _Tp>  |
137 | _Tp  |
138 | __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x,  |
139 | _Tp __phase = _Tp(+1))  |
140 | {  |
141 |   |
142 | if (__m > __l)  |
143 | return _Tp(0);  |
144 | else if (__isnan(__x))  |
145 | return std::numeric_limits<_Tp>::quiet_NaN();  |
146 | else if (__m == 0)  |
147 | return __poly_legendre_p(__l, __x);  |
148 | else  |
149 | {  |
150 | _Tp __p_mm = _Tp(1);  |
151 | if (__m > 0)  |
152 | {  |
153 | // Two square roots seem more accurate more of the time  |
154 | // than just one.  |
155 | _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);  |
156 | _Tp __fact = _Tp(1);  |
157 | for (unsigned int __i = 1; __i <= __m; ++__i)  |
158 | {  |
159 | __p_mm *= __phase * __fact * __root;  |
160 | __fact += _Tp(2);  |
161 | }  |
162 | }  |
163 | if (__l == __m)  |
164 | return __p_mm;  |
165 |   |
166 | _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;  |
167 | if (__l == __m + 1)  |
168 | return __p_mp1m;  |
169 |   |
170 | _Tp __p_lm2m = __p_mm;  |
171 | _Tp __P_lm1m = __p_mp1m;  |
172 | _Tp __p_lm = _Tp(0);  |
173 | for (unsigned int __j = __m + 2; __j <= __l; ++__j)  |
174 | {  |
175 | __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m  |
176 | - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);  |
177 | __p_lm2m = __P_lm1m;  |
178 | __P_lm1m = __p_lm;  |
179 | }  |
180 |   |
181 | return __p_lm;  |
182 | }  |
183 | }  |
184 |   |
185 |   |
186 | /**  |
187 | * @brief Return the spherical associated Legendre function.  |
188 | *   |
189 | * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,  |
190 | * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where  |
191 | * @f[  |
192 | * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}  |
193 | * \frac{(l-m)!}{(l+m)!}]  |
194 | * P_l^m(\cos\theta) \exp^{im\phi}  |
195 | * @f]  |
196 | * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the  |
197 | * associated Legendre function.  |
198 | *   |
199 | * This function differs from the associated Legendre function by  |
200 | * argument (@f$x = \cos(\theta)@f$) and by a normalization factor  |
201 | * but this factor is rather large for large @f$ l @f$ and @f$ m @f$  |
202 | * and so this function is stable for larger differences of @f$ l @f$  |
203 | * and @f$ m @f$.  |
204 | * @note Unlike the case for __assoc_legendre_p the Condon-Shortley  |
205 | * phase factor @f$ (-1)^m @f$ is present here.  |
206 | * @note @f$ Y_l^m(\theta) = 0 @f$ if @f$ m > l @f$.  |
207 | *   |
208 | * @param l The degree of the spherical associated Legendre function.  |
209 | * @f$ l >= 0 @f$.  |
210 | * @param m The order of the spherical associated Legendre function.  |
211 | * @param theta The radian angle argument of the spherical associated  |
212 | * Legendre function.  |
213 | */  |
214 | template <typename _Tp>  |
215 | _Tp  |
216 | __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)  |
217 | {  |
218 | if (__isnan(__theta))  |
219 | return std::numeric_limits<_Tp>::quiet_NaN();  |
220 |   |
221 | const _Tp __x = std::cos(__theta);  |
222 |   |
223 | if (__m > __l)  |
224 | return _Tp(0);  |
225 | else if (__m == 0)  |
226 | {  |
227 | _Tp __P = __poly_legendre_p(__l, __x);  |
228 | _Tp __fact = std::sqrt(_Tp(2 * __l + 1)  |
229 | / (_Tp(4) * __numeric_constants<_Tp>::__pi()));  |
230 | __P *= __fact;  |
231 | return __P;  |
232 | }  |
233 | else if (__x == _Tp(1) || __x == -_Tp(1))  |
234 | {  |
235 | // m > 0 here  |
236 | return _Tp(0);  |
237 | }  |
238 | else  |
239 | {  |
240 | // m > 0 and |x| < 1 here  |
241 |   |
242 | // Starting value for recursion.  |
243 | // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )  |
244 | // (-1)^m (1-x^2)^(m/2) / pi^(1/4)  |
245 | const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));  |
246 | const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));  |
247 | #if _GLIBCXX_USE_C99_MATH_TR1  |
248 | const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x);  |
249 | #else  |
250 | const _Tp __lncirc = std::log(_Tp(1) - __x * __x);  |
251 | #endif  |
252 | // Gamma(m+1/2) / Gamma(m)  |
253 | #if _GLIBCXX_USE_C99_MATH_TR1  |
254 | const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L)))  |
255 | - _GLIBCXX_MATH_NS::lgamma(_Tp(__m));  |
256 | #else  |
257 | const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))  |
258 | - __log_gamma(_Tp(__m));  |
259 | #endif  |
260 | const _Tp __lnpre_val =  |
261 | -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()  |
262 | + _Tp(0.5L) * (__lnpoch + __m * __lncirc);  |
263 | const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)  |
264 | / (_Tp(4) * __numeric_constants<_Tp>::__pi()));  |
265 | _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);  |
266 | _Tp __y_mp1m = __y_mp1m_factor * __y_mm;  |
267 |   |
268 | if (__l == __m)  |
269 | return __y_mm;  |
270 | else if (__l == __m + 1)  |
271 | return __y_mp1m;  |
272 | else  |
273 | {  |
274 | _Tp __y_lm = _Tp(0);  |
275 |   |
276 | // Compute Y_l^m, l > m+1, upward recursion on l.  |
277 | for (int __ll = __m + 2; __ll <= __l; ++__ll)  |
278 | {  |
279 | const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);  |
280 | const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);  |
281 | const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)  |
282 | * _Tp(2 * __ll - 1));  |
283 | const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)  |
284 | / _Tp(2 * __ll - 3));  |
285 | __y_lm = (__x * __y_mp1m * __fact1  |
286 | - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);  |
287 | __y_mm = __y_mp1m;  |
288 | __y_mp1m = __y_lm;  |
289 | }  |
290 |   |
291 | return __y_lm;  |
292 | }  |
293 | }  |
294 | }  |
295 | } // namespace __detail  |
296 | #undef _GLIBCXX_MATH_NS  |
297 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)  |
298 | } // namespace tr1  |
299 | #endif  |
300 |   |
301 | _GLIBCXX_END_NAMESPACE_VERSION  |
302 | }  |
303 |   |
304 | #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC  |
305 | |