1// Special functions -*- C++ -*- 
2 
3// Copyright (C) 2006-2019 Free Software Foundation, Inc. 
4// 
5// This file is part of the GNU ISO C++ Library. This library is free 
6// software; you can redistribute it and/or modify it under the 
7// terms of the GNU General Public License as published by the 
8// Free Software Foundation; either version 3, or (at your option) 
9// any later version. 
10// 
11// This library is distributed in the hope that it will be useful, 
12// but WITHOUT ANY WARRANTY; without even the implied warranty of 
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
14// GNU General Public License for more details. 
15// 
16// Under Section 7 of GPL version 3, you are granted additional 
17// permissions described in the GCC Runtime Library Exception, version 
18// 3.1, as published by the Free Software Foundation. 
19 
20// You should have received a copy of the GNU General Public License and 
21// a copy of the GCC Runtime Library Exception along with this program; 
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 
23// <http://www.gnu.org/licenses/>. 
24 
25/** @file tr1/legendre_function.tcc 
26 * This is an internal header file, included by other library headers. 
27 * Do not attempt to use it directly. @headername{tr1/cmath} 
28 */ 
29 
30// 
31// ISO C++ 14882 TR1: 5.2 Special functions 
32// 
33 
34// Written by Edward Smith-Rowland based on: 
35// (1) Handbook of Mathematical Functions, 
36// ed. Milton Abramowitz and Irene A. Stegun, 
37// Dover Publications, 
38// Section 8, pp. 331-341 
39// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 
40// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, 
41// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), 
42// 2nd ed, pp. 252-254 
43 
44#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 
45#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1 
46 
47#include <tr1/special_function_util.h> 
48 
49namespace std _GLIBCXX_VISIBILITY(default
50
51_GLIBCXX_BEGIN_NAMESPACE_VERSION 
52 
53#if _GLIBCXX_USE_STD_SPEC_FUNCS 
54# define _GLIBCXX_MATH_NS ::std 
55#elif defined(_GLIBCXX_TR1_CMATH) 
56namespace tr1 
57
58# define _GLIBCXX_MATH_NS ::std::tr1 
59#else 
60# error do not include this header directly, use <cmath> or <tr1/cmath> 
61#endif 
62 // [5.2] Special functions 
63 
64 // Implementation-space details. 
65 namespace __detail 
66
67 /** 
68 * @brief Return the Legendre polynomial by recursion on degree 
69 * @f$ l @f$. 
70 *  
71 * The Legendre function of @f$ l @f$ and @f$ x @f$, 
72 * @f$ P_l(x) @f$, is defined by: 
73 * @f[ 
74 * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} 
75 * @f] 
76 *  
77 * @param l The degree of the Legendre polynomial. @f$l >= 0@f$. 
78 * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$. 
79 */ 
80 template<typename _Tp> 
81 _Tp 
82 __poly_legendre_p(unsigned int __l, _Tp __x
83
84 
85 if (__isnan(__x)) 
86 return std::numeric_limits<_Tp>::quiet_NaN(); 
87 else if (__x == +_Tp(1)) 
88 return +_Tp(1); 
89 else if (__x == -_Tp(1)) 
90 return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1)); 
91 else 
92
93 _Tp __p_lm2 = _Tp(1); 
94 if (__l == 0
95 return __p_lm2
96 
97 _Tp __p_lm1 = __x
98 if (__l == 1
99 return __p_lm1
100 
101 _Tp __p_l = 0
102 for (unsigned int __ll = 2; __ll <= __l; ++__ll
103
104 // This arrangement is supposed to be better for roundoff 
105 // protection, Arfken, 2nd Ed, Eq 12.17a. 
106 __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2 
107 - (__x * __p_lm1 - __p_lm2) / _Tp(__ll); 
108 __p_lm2 = __p_lm1
109 __p_lm1 = __p_l
110
111 
112 return __p_l
113
114
115 
116 
117 /** 
118 * @brief Return the associated Legendre function by recursion 
119 * on @f$ l @f$. 
120 *  
121 * The associated Legendre function is derived from the Legendre function 
122 * @f$ P_l(x) @f$ by the Rodrigues formula: 
123 * @f[ 
124 * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) 
125 * @f] 
126 * @note @f$ P_l^m(x) = 0 @f$ if @f$ m > l @f$. 
127 *  
128 * @param l The degree of the associated Legendre function. 
129 * @f$ l >= 0 @f$. 
130 * @param m The order of the associated Legendre function. 
131 * @param x The argument of the associated Legendre function. 
132 * @f$ |x| <= 1 @f$. 
133 * @param phase The phase of the associated Legendre function. 
134 * Use -1 for the Condon-Shortley phase convention. 
135 */ 
136 template<typename _Tp> 
137 _Tp 
138 __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x
139 _Tp __phase = _Tp(+1)) 
140
141 
142 if (__m > __l
143 return _Tp(0); 
144 else if (__isnan(__x)) 
145 return std::numeric_limits<_Tp>::quiet_NaN(); 
146 else if (__m == 0
147 return __poly_legendre_p(__l, __x); 
148 else 
149
150 _Tp __p_mm = _Tp(1); 
151 if (__m > 0
152
153 // Two square roots seem more accurate more of the time 
154 // than just one. 
155 _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x); 
156 _Tp __fact = _Tp(1); 
157 for (unsigned int __i = 1; __i <= __m; ++__i
158
159 __p_mm *= __phase * __fact * __root
160 __fact += _Tp(2); 
161
162
163 if (__l == __m
164 return __p_mm
165 
166 _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm
167 if (__l == __m + 1
168 return __p_mp1m
169 
170 _Tp __p_lm2m = __p_mm
171 _Tp __P_lm1m = __p_mp1m
172 _Tp __p_lm = _Tp(0); 
173 for (unsigned int __j = __m + 2; __j <= __l; ++__j
174
175 __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m 
176 - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m); 
177 __p_lm2m = __P_lm1m
178 __P_lm1m = __p_lm
179
180 
181 return __p_lm
182
183
184 
185 
186 /** 
187 * @brief Return the spherical associated Legendre function. 
188 *  
189 * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$, 
190 * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where 
191 * @f[ 
192 * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} 
193 * \frac{(l-m)!}{(l+m)!}] 
194 * P_l^m(\cos\theta) \exp^{im\phi} 
195 * @f] 
196 * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the 
197 * associated Legendre function. 
198 *  
199 * This function differs from the associated Legendre function by 
200 * argument (@f$x = \cos(\theta)@f$) and by a normalization factor 
201 * but this factor is rather large for large @f$ l @f$ and @f$ m @f$ 
202 * and so this function is stable for larger differences of @f$ l @f$ 
203 * and @f$ m @f$. 
204 * @note Unlike the case for __assoc_legendre_p the Condon-Shortley 
205 * phase factor @f$ (-1)^m @f$ is present here. 
206 * @note @f$ Y_l^m(\theta) = 0 @f$ if @f$ m > l @f$. 
207 *  
208 * @param l The degree of the spherical associated Legendre function. 
209 * @f$ l >= 0 @f$. 
210 * @param m The order of the spherical associated Legendre function. 
211 * @param theta The radian angle argument of the spherical associated 
212 * Legendre function. 
213 */ 
214 template <typename _Tp> 
215 _Tp 
216 __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta
217
218 if (__isnan(__theta)) 
219 return std::numeric_limits<_Tp>::quiet_NaN(); 
220 
221 const _Tp __x = std::cos(__theta); 
222 
223 if (__m > __l
224 return _Tp(0); 
225 else if (__m == 0
226
227 _Tp __P = __poly_legendre_p(__l, __x); 
228 _Tp __fact = std::sqrt(_Tp(2 * __l + 1
229 / (_Tp(4) * __numeric_constants<_Tp>::__pi())); 
230 __P *= __fact
231 return __P
232
233 else if (__x == _Tp(1) || __x == -_Tp(1)) 
234
235 // m > 0 here 
236 return _Tp(0); 
237
238 else 
239
240 // m > 0 and |x| < 1 here 
241 
242 // Starting value for recursion. 
243 // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) 
244 // (-1)^m (1-x^2)^(m/2) / pi^(1/4) 
245 const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1)); 
246 const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3)); 
247#if _GLIBCXX_USE_C99_MATH_TR1 
248 const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x); 
249#else 
250 const _Tp __lncirc = std::log(_Tp(1) - __x * __x); 
251#endif 
252 // Gamma(m+1/2) / Gamma(m) 
253#if _GLIBCXX_USE_C99_MATH_TR1 
254 const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L))) 
255 - _GLIBCXX_MATH_NS::lgamma(_Tp(__m)); 
256#else 
257 const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L))) 
258 - __log_gamma(_Tp(__m)); 
259#endif 
260 const _Tp __lnpre_val
261 -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi() 
262 + _Tp(0.5L) * (__lnpoch + __m * __lncirc); 
263 const _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m
264 / (_Tp(4) * __numeric_constants<_Tp>::__pi())); 
265 _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val); 
266 _Tp __y_mp1m = __y_mp1m_factor * __y_mm
267 
268 if (__l == __m
269 return __y_mm
270 else if (__l == __m + 1
271 return __y_mp1m
272 else 
273
274 _Tp __y_lm = _Tp(0); 
275 
276 // Compute Y_l^m, l > m+1, upward recursion on l. 
277 for (int __ll = __m + 2; __ll <= __l; ++__ll
278
279 const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m); 
280 const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1); 
281 const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1
282 * _Tp(2 * __ll - 1)); 
283 const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1
284 / _Tp(2 * __ll - 3)); 
285 __y_lm = (__x * __y_mp1m * __fact1 
286 - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m); 
287 __y_mm = __y_mp1m
288 __y_mp1m = __y_lm
289
290 
291 return __y_lm
292
293
294
295 } // namespace __detail 
296#undef _GLIBCXX_MATH_NS 
297#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) 
298} // namespace tr1 
299#endif 
300 
301_GLIBCXX_END_NAMESPACE_VERSION 
302
303 
304#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 
305