1 | // Special functions -*- C++ -*-  |
2 |   |
3 | // Copyright (C) 2006-2019 Free Software Foundation, Inc.  |
4 | //  |
5 | // This file is part of the GNU ISO C++ Library. This library is free  |
6 | // software; you can redistribute it and/or modify it under the  |
7 | // terms of the GNU General Public License as published by the  |
8 | // Free Software Foundation; either version 3, or (at your option)  |
9 | // any later version.  |
10 | //  |
11 | // This library is distributed in the hope that it will be useful,  |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of  |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  |
14 | // GNU General Public License for more details.  |
15 | //  |
16 | // Under Section 7 of GPL version 3, you are granted additional  |
17 | // permissions described in the GCC Runtime Library Exception, version  |
18 | // 3.1, as published by the Free Software Foundation.  |
19 |   |
20 | // You should have received a copy of the GNU General Public License and  |
21 | // a copy of the GCC Runtime Library Exception along with this program;  |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see  |
23 | // <http://www.gnu.org/licenses/>.  |
24 |   |
25 | /** @file tr1/modified_bessel_func.tcc  |
26 | * This is an internal header file, included by other library headers.  |
27 | * Do not attempt to use it directly. @headername{tr1/cmath}  |
28 | */  |
29 |   |
30 | //  |
31 | // ISO C++ 14882 TR1: 5.2 Special functions  |
32 | //  |
33 |   |
34 | // Written by Edward Smith-Rowland.  |
35 | //  |
36 | // References:  |
37 | // (1) Handbook of Mathematical Functions,  |
38 | // Ed. Milton Abramowitz and Irene A. Stegun,  |
39 | // Dover Publications,  |
40 | // Section 9, pp. 355-434, Section 10 pp. 435-478  |
41 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl  |
42 | // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,  |
43 | // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),  |
44 | // 2nd ed, pp. 246-249.  |
45 |   |
46 | #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC  |
47 | #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1  |
48 |   |
49 | #include <tr1/special_function_util.h>  |
50 |   |
51 | namespace std _GLIBCXX_VISIBILITY(default)  |
52 | {  |
53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION  |
54 |   |
55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS  |
56 | #elif defined(_GLIBCXX_TR1_CMATH)  |
57 | namespace tr1  |
58 | {  |
59 | #else  |
60 | # error do not include this header directly, use <cmath> or <tr1/cmath>  |
61 | #endif  |
62 | // [5.2] Special functions  |
63 |   |
64 | // Implementation-space details.  |
65 | namespace __detail  |
66 | {  |
67 | /**  |
68 | * @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and  |
69 | * @f$ K_\nu(x) @f$ and their first derivatives  |
70 | * @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.  |
71 | * These four functions are computed together for numerical  |
72 | * stability.  |
73 | *  |
74 | * @param __nu The order of the Bessel functions.  |
75 | * @param __x The argument of the Bessel functions.  |
76 | * @param __Inu The output regular modified Bessel function.  |
77 | * @param __Knu The output irregular modified Bessel function.  |
78 | * @param __Ipnu The output derivative of the regular  |
79 | * modified Bessel function.  |
80 | * @param __Kpnu The output derivative of the irregular  |
81 | * modified Bessel function.  |
82 | */  |
83 | template <typename _Tp>  |
84 | void  |
85 | __bessel_ik(_Tp __nu, _Tp __x,  |
86 | _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)  |
87 | {  |
88 | if (__x == _Tp(0))  |
89 | {  |
90 | if (__nu == _Tp(0))  |
91 | {  |
92 | __Inu = _Tp(1);  |
93 | __Ipnu = _Tp(0);  |
94 | }  |
95 | else if (__nu == _Tp(1))  |
96 | {  |
97 | __Inu = _Tp(0);  |
98 | __Ipnu = _Tp(0.5L);  |
99 | }  |
100 | else  |
101 | {  |
102 | __Inu = _Tp(0);  |
103 | __Ipnu = _Tp(0);  |
104 | }  |
105 | __Knu = std::numeric_limits<_Tp>::infinity();  |
106 | __Kpnu = -std::numeric_limits<_Tp>::infinity();  |
107 | return;  |
108 | }  |
109 |   |
110 | const _Tp __eps = std::numeric_limits<_Tp>::epsilon();  |
111 | const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();  |
112 | const int __max_iter = 15000;  |
113 | const _Tp __x_min = _Tp(2);  |
114 |   |
115 | const int __nl = static_cast<int>(__nu + _Tp(0.5L));  |
116 |   |
117 | const _Tp __mu = __nu - __nl;  |
118 | const _Tp __mu2 = __mu * __mu;  |
119 | const _Tp __xi = _Tp(1) / __x;  |
120 | const _Tp __xi2 = _Tp(2) * __xi;  |
121 | _Tp __h = __nu * __xi;  |
122 | if ( __h < __fp_min )  |
123 | __h = __fp_min;  |
124 | _Tp __b = __xi2 * __nu;  |
125 | _Tp __d = _Tp(0);  |
126 | _Tp __c = __h;  |
127 | int __i;  |
128 | for ( __i = 1; __i <= __max_iter; ++__i )  |
129 | {  |
130 | __b += __xi2;  |
131 | __d = _Tp(1) / (__b + __d);  |
132 | __c = __b + _Tp(1) / __c;  |
133 | const _Tp __del = __c * __d;  |
134 | __h *= __del;  |
135 | if (std::abs(__del - _Tp(1)) < __eps)  |
136 | break;  |
137 | }  |
138 | if (__i > __max_iter)  |
139 | std::__throw_runtime_error(__N("Argument x too large "   |
140 | "in __bessel_ik; "   |
141 | "try asymptotic expansion." ));  |
142 | _Tp __Inul = __fp_min;  |
143 | _Tp __Ipnul = __h * __Inul;  |
144 | _Tp __Inul1 = __Inul;  |
145 | _Tp __Ipnu1 = __Ipnul;  |
146 | _Tp __fact = __nu * __xi;  |
147 | for (int __l = __nl; __l >= 1; --__l)  |
148 | {  |
149 | const _Tp __Inutemp = __fact * __Inul + __Ipnul;  |
150 | __fact -= __xi;  |
151 | __Ipnul = __fact * __Inutemp + __Inul;  |
152 | __Inul = __Inutemp;  |
153 | }  |
154 | _Tp __f = __Ipnul / __Inul;  |
155 | _Tp __Kmu, __Knu1;  |
156 | if (__x < __x_min)  |
157 | {  |
158 | const _Tp __x2 = __x / _Tp(2);  |
159 | const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;  |
160 | const _Tp __fact = (std::abs(__pimu) < __eps  |
161 | ? _Tp(1) : __pimu / std::sin(__pimu));  |
162 | _Tp __d = -std::log(__x2);  |
163 | _Tp __e = __mu * __d;  |
164 | const _Tp __fact2 = (std::abs(__e) < __eps  |
165 | ? _Tp(1) : std::sinh(__e) / __e);  |
166 | _Tp __gam1, __gam2, __gampl, __gammi;  |
167 | __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);  |
168 | _Tp __ff = __fact  |
169 | * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);  |
170 | _Tp __sum = __ff;  |
171 | __e = std::exp(__e);  |
172 | _Tp __p = __e / (_Tp(2) * __gampl);  |
173 | _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);  |
174 | _Tp __c = _Tp(1);  |
175 | __d = __x2 * __x2;  |
176 | _Tp __sum1 = __p;  |
177 | int __i;  |
178 | for (__i = 1; __i <= __max_iter; ++__i)  |
179 | {  |
180 | __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);  |
181 | __c *= __d / __i;  |
182 | __p /= __i - __mu;  |
183 | __q /= __i + __mu;  |
184 | const _Tp __del = __c * __ff;  |
185 | __sum += __del;   |
186 | const _Tp __del1 = __c * (__p - __i * __ff);  |
187 | __sum1 += __del1;  |
188 | if (std::abs(__del) < __eps * std::abs(__sum))  |
189 | break;  |
190 | }  |
191 | if (__i > __max_iter)  |
192 | std::__throw_runtime_error(__N("Bessel k series failed to converge "   |
193 | "in __bessel_ik." ));  |
194 | __Kmu = __sum;  |
195 | __Knu1 = __sum1 * __xi2;  |
196 | }  |
197 | else  |
198 | {  |
199 | _Tp __b = _Tp(2) * (_Tp(1) + __x);  |
200 | _Tp __d = _Tp(1) / __b;  |
201 | _Tp __delh = __d;  |
202 | _Tp __h = __delh;  |
203 | _Tp __q1 = _Tp(0);  |
204 | _Tp __q2 = _Tp(1);  |
205 | _Tp __a1 = _Tp(0.25L) - __mu2;  |
206 | _Tp __q = __c = __a1;  |
207 | _Tp __a = -__a1;  |
208 | _Tp __s = _Tp(1) + __q * __delh;  |
209 | int __i;  |
210 | for (__i = 2; __i <= __max_iter; ++__i)  |
211 | {  |
212 | __a -= 2 * (__i - 1);  |
213 | __c = -__a * __c / __i;  |
214 | const _Tp __qnew = (__q1 - __b * __q2) / __a;  |
215 | __q1 = __q2;  |
216 | __q2 = __qnew;  |
217 | __q += __c * __qnew;  |
218 | __b += _Tp(2);  |
219 | __d = _Tp(1) / (__b + __a * __d);  |
220 | __delh = (__b * __d - _Tp(1)) * __delh;  |
221 | __h += __delh;  |
222 | const _Tp __dels = __q * __delh;  |
223 | __s += __dels;  |
224 | if ( std::abs(__dels / __s) < __eps )  |
225 | break;  |
226 | }  |
227 | if (__i > __max_iter)  |
228 | std::__throw_runtime_error(__N("Steed's method failed "   |
229 | "in __bessel_ik." ));  |
230 | __h = __a1 * __h;  |
231 | __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))  |
232 | * std::exp(-__x) / __s;  |
233 | __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;  |
234 | }  |
235 |   |
236 | _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;  |
237 | _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);  |
238 | __Inu = __Inumu * __Inul1 / __Inul;  |
239 | __Ipnu = __Inumu * __Ipnu1 / __Inul;  |
240 | for ( __i = 1; __i <= __nl; ++__i )  |
241 | {  |
242 | const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;  |
243 | __Kmu = __Knu1;  |
244 | __Knu1 = __Knutemp;  |
245 | }  |
246 | __Knu = __Kmu;  |
247 | __Kpnu = __nu * __xi * __Kmu - __Knu1;  |
248 |   |
249 | return;  |
250 | }  |
251 |   |
252 |   |
253 | /**  |
254 | * @brief Return the regular modified Bessel function of order  |
255 | * \f$ \nu \f$: \f$ I_{\nu}(x) \f$.  |
256 | *  |
257 | * The regular modified cylindrical Bessel function is:  |
258 | * @f[  |
259 | * I_{\nu}(x) = \sum_{k=0}^{\infty}  |
260 | * \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}  |
261 | * @f]  |
262 | *  |
263 | * @param __nu The order of the regular modified Bessel function.  |
264 | * @param __x The argument of the regular modified Bessel function.  |
265 | * @return The output regular modified Bessel function.  |
266 | */  |
267 | template<typename _Tp>  |
268 | _Tp  |
269 | __cyl_bessel_i(_Tp __nu, _Tp __x)  |
270 | {  |
271 | if (__nu < _Tp(0) || __x < _Tp(0))  |
272 | std::__throw_domain_error(__N("Bad argument "   |
273 | "in __cyl_bessel_i." ));  |
274 | else if (__isnan(__nu) || __isnan(__x))  |
275 | return std::numeric_limits<_Tp>::quiet_NaN();  |
276 | else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))  |
277 | return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);  |
278 | else  |
279 | {  |
280 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;  |
281 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);  |
282 | return __I_nu;  |
283 | }  |
284 | }  |
285 |   |
286 |   |
287 | /**  |
288 | * @brief Return the irregular modified Bessel function  |
289 | * \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.  |
290 | *  |
291 | * The irregular modified Bessel function is defined by:  |
292 | * @f[  |
293 | * K_{\nu}(x) = \frac{\pi}{2}  |
294 | * \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}  |
295 | * @f]  |
296 | * where for integral \f$ \nu = n \f$ a limit is taken:  |
297 | * \f$ lim_{\nu \to n} \f$.  |
298 | *  |
299 | * @param __nu The order of the irregular modified Bessel function.  |
300 | * @param __x The argument of the irregular modified Bessel function.  |
301 | * @return The output irregular modified Bessel function.  |
302 | */  |
303 | template<typename _Tp>  |
304 | _Tp  |
305 | __cyl_bessel_k(_Tp __nu, _Tp __x)  |
306 | {  |
307 | if (__nu < _Tp(0) || __x < _Tp(0))  |
308 | std::__throw_domain_error(__N("Bad argument "   |
309 | "in __cyl_bessel_k." ));  |
310 | else if (__isnan(__nu) || __isnan(__x))  |
311 | return std::numeric_limits<_Tp>::quiet_NaN();  |
312 | else  |
313 | {  |
314 | _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;  |
315 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);  |
316 | return __K_nu;  |
317 | }  |
318 | }  |
319 |   |
320 |   |
321 | /**  |
322 | * @brief Compute the spherical modified Bessel functions  |
323 | * @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first  |
324 | * derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$  |
325 | * respectively.  |
326 | *  |
327 | * @param __n The order of the modified spherical Bessel function.  |
328 | * @param __x The argument of the modified spherical Bessel function.  |
329 | * @param __i_n The output regular modified spherical Bessel function.  |
330 | * @param __k_n The output irregular modified spherical  |
331 | * Bessel function.  |
332 | * @param __ip_n The output derivative of the regular modified  |
333 | * spherical Bessel function.  |
334 | * @param __kp_n The output derivative of the irregular modified  |
335 | * spherical Bessel function.  |
336 | */  |
337 | template <typename _Tp>  |
338 | void  |
339 | __sph_bessel_ik(unsigned int __n, _Tp __x,  |
340 | _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)  |
341 | {  |
342 | const _Tp __nu = _Tp(__n) + _Tp(0.5L);  |
343 |   |
344 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;  |
345 | __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);  |
346 |   |
347 | const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()  |
348 | / std::sqrt(__x);  |
349 |   |
350 | __i_n = __factor * __I_nu;  |
351 | __k_n = __factor * __K_nu;  |
352 | __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);  |
353 | __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);  |
354 |   |
355 | return;  |
356 | }  |
357 |   |
358 |   |
359 | /**  |
360 | * @brief Compute the Airy functions  |
361 | * @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first  |
362 | * derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$  |
363 | * respectively.  |
364 | *  |
365 | * @param __x The argument of the Airy functions.  |
366 | * @param __Ai The output Airy function of the first kind.  |
367 | * @param __Bi The output Airy function of the second kind.  |
368 | * @param __Aip The output derivative of the Airy function  |
369 | * of the first kind.  |
370 | * @param __Bip The output derivative of the Airy function  |
371 | * of the second kind.  |
372 | */  |
373 | template <typename _Tp>  |
374 | void  |
375 | __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)  |
376 | {  |
377 | const _Tp __absx = std::abs(__x);  |
378 | const _Tp __rootx = std::sqrt(__absx);  |
379 | const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);  |
380 | const _Tp _S_NaN = std::numeric_limits<_Tp>::quiet_NaN();  |
381 | const _Tp _S_inf = std::numeric_limits<_Tp>::infinity();  |
382 |   |
383 | if (__isnan(__x))  |
384 | __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN();  |
385 | else if (__z == _S_inf)  |
386 | {  |
387 | __Aip = __Ai = _Tp(0);  |
388 | __Bip = __Bi = _S_inf;  |
389 | }  |
390 | else if (__z == -_S_inf)  |
391 | __Bip = __Aip = __Bi = __Ai = _Tp(0);  |
392 | else if (__x > _Tp(0))  |
393 | {  |
394 | _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;  |
395 |   |
396 | __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);  |
397 | __Ai = __rootx * __K_nu  |
398 | / (__numeric_constants<_Tp>::__sqrt3()  |
399 | * __numeric_constants<_Tp>::__pi());  |
400 | __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()  |
401 | + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());  |
402 |   |
403 | __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);  |
404 | __Aip = -__x * __K_nu  |
405 | / (__numeric_constants<_Tp>::__sqrt3()  |
406 | * __numeric_constants<_Tp>::__pi());  |
407 | __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()  |
408 | + _Tp(2) * __I_nu  |
409 | / __numeric_constants<_Tp>::__sqrt3());  |
410 | }  |
411 | else if (__x < _Tp(0))  |
412 | {  |
413 | _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;  |
414 |   |
415 | __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);  |
416 | __Ai = __rootx * (__J_nu  |
417 | - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);  |
418 | __Bi = -__rootx * (__N_nu  |
419 | + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);  |
420 |   |
421 | __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);  |
422 | __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()  |
423 | + __J_nu) / _Tp(2);  |
424 | __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()  |
425 | - __N_nu) / _Tp(2);  |
426 | }  |
427 | else  |
428 | {  |
429 | // Reference:  |
430 | // Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.  |
431 | // The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).  |
432 | __Ai = _Tp(0.35502805388781723926L);  |
433 | __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();  |
434 |   |
435 | // Reference:  |
436 | // Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.  |
437 | // The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).  |
438 | __Aip = -_Tp(0.25881940379280679840L);  |
439 | __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();  |
440 | }  |
441 |   |
442 | return;  |
443 | }  |
444 | } // namespace __detail  |
445 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)  |
446 | } // namespace tr1  |
447 | #endif  |
448 |   |
449 | _GLIBCXX_END_NAMESPACE_VERSION  |
450 | }  |
451 |   |
452 | #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC  |
453 | |