1 | // Special functions -*- C++ -*-  |
2 |   |
3 | // Copyright (C) 2006-2019 Free Software Foundation, Inc.  |
4 | //  |
5 | // This file is part of the GNU ISO C++ Library. This library is free  |
6 | // software; you can redistribute it and/or modify it under the  |
7 | // terms of the GNU General Public License as published by the  |
8 | // Free Software Foundation; either version 3, or (at your option)  |
9 | // any later version.  |
10 | //  |
11 | // This library is distributed in the hope that it will be useful,  |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of  |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  |
14 | // GNU General Public License for more details.  |
15 | //  |
16 | // Under Section 7 of GPL version 3, you are granted additional  |
17 | // permissions described in the GCC Runtime Library Exception, version  |
18 | // 3.1, as published by the Free Software Foundation.  |
19 |   |
20 | // You should have received a copy of the GNU General Public License and  |
21 | // a copy of the GCC Runtime Library Exception along with this program;  |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see  |
23 | // <http://www.gnu.org/licenses/>.  |
24 |   |
25 | /** @file tr1/poly_laguerre.tcc  |
26 | * This is an internal header file, included by other library headers.  |
27 | * Do not attempt to use it directly. @headername{tr1/cmath}  |
28 | */  |
29 |   |
30 | //  |
31 | // ISO C++ 14882 TR1: 5.2 Special functions  |
32 | //  |
33 |   |
34 | // Written by Edward Smith-Rowland based on:  |
35 | // (1) Handbook of Mathematical Functions,  |
36 | // Ed. Milton Abramowitz and Irene A. Stegun,  |
37 | // Dover Publications,  |
38 | // Section 13, pp. 509-510, Section 22 pp. 773-802  |
39 | // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl  |
40 |   |
41 | #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC  |
42 | #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1  |
43 |   |
44 | namespace std _GLIBCXX_VISIBILITY(default)  |
45 | {  |
46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION  |
47 |   |
48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS  |
49 | # define _GLIBCXX_MATH_NS ::std  |
50 | #elif defined(_GLIBCXX_TR1_CMATH)  |
51 | namespace tr1  |
52 | {  |
53 | # define _GLIBCXX_MATH_NS ::std::tr1  |
54 | #else  |
55 | # error do not include this header directly, use <cmath> or <tr1/cmath>  |
56 | #endif  |
57 | // [5.2] Special functions  |
58 |   |
59 | // Implementation-space details.  |
60 | namespace __detail  |
61 | {  |
62 | /**  |
63 | * @brief This routine returns the associated Laguerre polynomial   |
64 | * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.  |
65 | * Abramowitz & Stegun, 13.5.21  |
66 | *  |
67 | * @param __n The order of the Laguerre function.  |
68 | * @param __alpha The degree of the Laguerre function.  |
69 | * @param __x The argument of the Laguerre function.  |
70 | * @return The value of the Laguerre function of order n,  |
71 | * degree @f$ \alpha @f$, and argument x.  |
72 | *  |
73 | * This is from the GNU Scientific Library.  |
74 | */  |
75 | template<typename _Tpa, typename _Tp>  |
76 | _Tp  |
77 | __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)  |
78 | {  |
79 | const _Tp __a = -_Tp(__n);  |
80 | const _Tp __b = _Tp(__alpha1) + _Tp(1);  |
81 | const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;  |
82 | const _Tp __cos2th = __x / __eta;  |
83 | const _Tp __sin2th = _Tp(1) - __cos2th;  |
84 | const _Tp __th = std::acos(std::sqrt(__cos2th));  |
85 | const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()  |
86 | * __numeric_constants<_Tp>::__pi_2()  |
87 | * __eta * __eta * __cos2th * __sin2th;  |
88 |   |
89 | #if _GLIBCXX_USE_C99_MATH_TR1  |
90 | const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b);  |
91 | const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));  |
92 | #else  |
93 | const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);  |
94 | const _Tp __lnfact = __log_gamma(_Tp(__n + 1));  |
95 | #endif  |
96 |   |
97 | _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)  |
98 | * std::log(_Tp(0.25L) * __x * __eta);  |
99 | _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);  |
100 | _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x  |
101 | + __pre_term1 - __pre_term2;  |
102 | _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());  |
103 | _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta  |
104 | * (_Tp(2) * __th  |
105 | - std::sin(_Tp(2) * __th))  |
106 | + __numeric_constants<_Tp>::__pi_4());  |
107 | _Tp __ser = __ser_term1 + __ser_term2;  |
108 |   |
109 | return std::exp(__lnpre) * __ser;  |
110 | }  |
111 |   |
112 |   |
113 | /**  |
114 | * @brief Evaluate the polynomial based on the confluent hypergeometric  |
115 | * function in a safe way, with no restriction on the arguments.  |
116 | *  |
117 | * The associated Laguerre function is defined by  |
118 | * @f[  |
119 | * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}  |
120 | * _1F_1(-n; \alpha + 1; x)  |
121 | * @f]  |
122 | * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and  |
123 | * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.  |
124 | *  |
125 | * This function assumes x != 0.  |
126 | *  |
127 | * This is from the GNU Scientific Library.  |
128 | */  |
129 | template<typename _Tpa, typename _Tp>  |
130 | _Tp  |
131 | __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)  |
132 | {  |
133 | const _Tp __b = _Tp(__alpha1) + _Tp(1);  |
134 | const _Tp __mx = -__x;  |
135 | const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)  |
136 | : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));  |
137 | // Get |x|^n/n!  |
138 | _Tp __tc = _Tp(1);  |
139 | const _Tp __ax = std::abs(__x);  |
140 | for (unsigned int __k = 1; __k <= __n; ++__k)  |
141 | __tc *= (__ax / __k);  |
142 |   |
143 | _Tp __term = __tc * __tc_sgn;  |
144 | _Tp __sum = __term;  |
145 | for (int __k = int(__n) - 1; __k >= 0; --__k)  |
146 | {  |
147 | __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))  |
148 | * _Tp(__k + 1) / __mx;  |
149 | __sum += __term;  |
150 | }  |
151 |   |
152 | return __sum;  |
153 | }  |
154 |   |
155 |   |
156 | /**  |
157 | * @brief This routine returns the associated Laguerre polynomial   |
158 | * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$  |
159 | * by recursion.  |
160 | *  |
161 | * The associated Laguerre function is defined by  |
162 | * @f[  |
163 | * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}  |
164 | * _1F_1(-n; \alpha + 1; x)  |
165 | * @f]  |
166 | * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and  |
167 | * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.  |
168 | *  |
169 | * The associated Laguerre polynomial is defined for integral  |
170 | * @f$ \alpha = m @f$ by:  |
171 | * @f[  |
172 | * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)  |
173 | * @f]  |
174 | * where the Laguerre polynomial is defined by:  |
175 | * @f[  |
176 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})  |
177 | * @f]  |
178 | *  |
179 | * @param __n The order of the Laguerre function.  |
180 | * @param __alpha The degree of the Laguerre function.  |
181 | * @param __x The argument of the Laguerre function.  |
182 | * @return The value of the Laguerre function of order n,  |
183 | * degree @f$ \alpha @f$, and argument x.  |
184 | */  |
185 | template<typename _Tpa, typename _Tp>  |
186 | _Tp  |
187 | __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)  |
188 | {  |
189 | // Compute l_0.  |
190 | _Tp __l_0 = _Tp(1);  |
191 | if (__n == 0)  |
192 | return __l_0;  |
193 |   |
194 | // Compute l_1^alpha.  |
195 | _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);  |
196 | if (__n == 1)  |
197 | return __l_1;  |
198 |   |
199 | // Compute l_n^alpha by recursion on n.  |
200 | _Tp __l_n2 = __l_0;  |
201 | _Tp __l_n1 = __l_1;  |
202 | _Tp __l_n = _Tp(0);  |
203 | for (unsigned int __nn = 2; __nn <= __n; ++__nn)  |
204 | {  |
205 | __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)  |
206 | * __l_n1 / _Tp(__nn)  |
207 | - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);  |
208 | __l_n2 = __l_n1;  |
209 | __l_n1 = __l_n;  |
210 | }  |
211 |   |
212 | return __l_n;  |
213 | }  |
214 |   |
215 |   |
216 | /**  |
217 | * @brief This routine returns the associated Laguerre polynomial  |
218 | * of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.  |
219 | *  |
220 | * The associated Laguerre function is defined by  |
221 | * @f[  |
222 | * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}  |
223 | * _1F_1(-n; \alpha + 1; x)  |
224 | * @f]  |
225 | * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and  |
226 | * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.  |
227 | *  |
228 | * The associated Laguerre polynomial is defined for integral  |
229 | * @f$ \alpha = m @f$ by:  |
230 | * @f[  |
231 | * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)  |
232 | * @f]  |
233 | * where the Laguerre polynomial is defined by:  |
234 | * @f[  |
235 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})  |
236 | * @f]  |
237 | *  |
238 | * @param __n The order of the Laguerre function.  |
239 | * @param __alpha The degree of the Laguerre function.  |
240 | * @param __x The argument of the Laguerre function.  |
241 | * @return The value of the Laguerre function of order n,  |
242 | * degree @f$ \alpha @f$, and argument x.  |
243 | */  |
244 | template<typename _Tpa, typename _Tp>  |
245 | _Tp  |
246 | __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)  |
247 | {  |
248 | if (__x < _Tp(0))  |
249 | std::__throw_domain_error(__N("Negative argument "   |
250 | "in __poly_laguerre." ));  |
251 | // Return NaN on NaN input.  |
252 | else if (__isnan(__x))  |
253 | return std::numeric_limits<_Tp>::quiet_NaN();  |
254 | else if (__n == 0)  |
255 | return _Tp(1);  |
256 | else if (__n == 1)  |
257 | return _Tp(1) + _Tp(__alpha1) - __x;  |
258 | else if (__x == _Tp(0))  |
259 | {  |
260 | _Tp __prod = _Tp(__alpha1) + _Tp(1);  |
261 | for (unsigned int __k = 2; __k <= __n; ++__k)  |
262 | __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);  |
263 | return __prod;  |
264 | }  |
265 | else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)  |
266 | && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))  |
267 | return __poly_laguerre_large_n(__n, __alpha1, __x);  |
268 | else if (_Tp(__alpha1) >= _Tp(0)  |
269 | || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))  |
270 | return __poly_laguerre_recursion(__n, __alpha1, __x);  |
271 | else  |
272 | return __poly_laguerre_hyperg(__n, __alpha1, __x);  |
273 | }  |
274 |   |
275 |   |
276 | /**  |
277 | * @brief This routine returns the associated Laguerre polynomial  |
278 | * of order n, degree m: @f$ L_n^m(x) @f$.  |
279 | *  |
280 | * The associated Laguerre polynomial is defined for integral  |
281 | * @f$ \alpha = m @f$ by:  |
282 | * @f[  |
283 | * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)  |
284 | * @f]  |
285 | * where the Laguerre polynomial is defined by:  |
286 | * @f[  |
287 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})  |
288 | * @f]  |
289 | *  |
290 | * @param __n The order of the Laguerre polynomial.  |
291 | * @param __m The degree of the Laguerre polynomial.  |
292 | * @param __x The argument of the Laguerre polynomial.  |
293 | * @return The value of the associated Laguerre polynomial of order n,  |
294 | * degree m, and argument x.  |
295 | */  |
296 | template<typename _Tp>  |
297 | inline _Tp  |
298 | __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)  |
299 | { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); }  |
300 |   |
301 |   |
302 | /**  |
303 | * @brief This routine returns the Laguerre polynomial  |
304 | * of order n: @f$ L_n(x) @f$.  |
305 | *  |
306 | * The Laguerre polynomial is defined by:  |
307 | * @f[  |
308 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})  |
309 | * @f]  |
310 | *  |
311 | * @param __n The order of the Laguerre polynomial.  |
312 | * @param __x The argument of the Laguerre polynomial.  |
313 | * @return The value of the Laguerre polynomial of order n  |
314 | * and argument x.  |
315 | */  |
316 | template<typename _Tp>  |
317 | inline _Tp  |
318 | __laguerre(unsigned int __n, _Tp __x)  |
319 | { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); }  |
320 | } // namespace __detail  |
321 | #undef _GLIBCXX_MATH_NS  |
322 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)  |
323 | } // namespace tr1  |
324 | #endif  |
325 |   |
326 | _GLIBCXX_END_NAMESPACE_VERSION  |
327 | }  |
328 |   |
329 | #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC  |
330 | |