| 1 | /* Prototype declarations for math functions; helper file for <math.h>.  |
| 2 | Copyright (C) 1996-2020 Free Software Foundation, Inc.  |
| 3 | This file is part of the GNU C Library.  |
| 4 |   |
| 5 | The GNU C Library is free software; you can redistribute it and/or  |
| 6 | modify it under the terms of the GNU Lesser General Public  |
| 7 | License as published by the Free Software Foundation; either  |
| 8 | version 2.1 of the License, or (at your option) any later version.  |
| 9 |   |
| 10 | The GNU C Library is distributed in the hope that it will be useful,  |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of  |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU  |
| 13 | Lesser General Public License for more details.  |
| 14 |   |
| 15 | You should have received a copy of the GNU Lesser General Public  |
| 16 | License along with the GNU C Library; if not, see  |
| 17 | <https://www.gnu.org/licenses/>. */  |
| 18 |   |
| 19 | /* NOTE: Because of the special way this file is used by <math.h>, this  |
| 20 | file must NOT be protected from multiple inclusion as header files  |
| 21 | usually are.  |
| 22 |   |
| 23 | This file provides prototype declarations for the math functions.  |
| 24 | Most functions are declared using the macro:  |
| 25 |   |
| 26 | __MATHCALL (NAME,[_r], (ARGS...));  |
| 27 |   |
| 28 | This means there is a function `NAME' returning `double' and a function  |
| 29 | `NAMEf' returning `float'. Each place `_Mdouble_' appears in the  |
| 30 | prototype, that is actually `double' in the prototype for `NAME' and  |
| 31 | `float' in the prototype for `NAMEf'. Reentrant variant functions are  |
| 32 | called `NAME_r' and `NAMEf_r'.  |
| 33 |   |
| 34 | Functions returning other types like `int' are declared using the macro:  |
| 35 |   |
| 36 | __MATHDECL (TYPE, NAME,[_r], (ARGS...));  |
| 37 |   |
| 38 | This is just like __MATHCALL but for a function returning `TYPE'  |
| 39 | instead of `_Mdouble_'. In all of these cases, there is still  |
| 40 | both a `NAME' and a `NAMEf' that takes `float' arguments.  |
| 41 |   |
| 42 | Note that there must be no whitespace before the argument passed for  |
| 43 | NAME, to make token pasting work with -traditional. */  |
| 44 |   |
| 45 | #ifndef _MATH_H  |
| 46 | # error "Never include <bits/mathcalls.h> directly; include <math.h> instead."  |
| 47 | #endif  |
| 48 |   |
| 49 |   |
| 50 | /* Trigonometric functions. */  |
| 51 |   |
| 52 | /* Arc cosine of X. */  |
| 53 | __MATHCALL (acos,, (_Mdouble_ __x));  |
| 54 | /* Arc sine of X. */  |
| 55 | __MATHCALL (asin,, (_Mdouble_ __x));  |
| 56 | /* Arc tangent of X. */  |
| 57 | __MATHCALL (atan,, (_Mdouble_ __x));  |
| 58 | /* Arc tangent of Y/X. */  |
| 59 | __MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));  |
| 60 |   |
| 61 | /* Cosine of X. */  |
| 62 | __MATHCALL_VEC (cos,, (_Mdouble_ __x));  |
| 63 | /* Sine of X. */  |
| 64 | __MATHCALL_VEC (sin,, (_Mdouble_ __x));  |
| 65 | /* Tangent of X. */  |
| 66 | __MATHCALL (tan,, (_Mdouble_ __x));  |
| 67 |   |
| 68 | /* Hyperbolic functions. */  |
| 69 |   |
| 70 | /* Hyperbolic cosine of X. */  |
| 71 | __MATHCALL (cosh,, (_Mdouble_ __x));  |
| 72 | /* Hyperbolic sine of X. */  |
| 73 | __MATHCALL (sinh,, (_Mdouble_ __x));  |
| 74 | /* Hyperbolic tangent of X. */  |
| 75 | __MATHCALL (tanh,, (_Mdouble_ __x));  |
| 76 |   |
| 77 | #ifdef __USE_GNU  |
| 78 | /* Cosine and sine of X. */  |
| 79 | __MATHDECL_VEC (void,sincos,,  |
| 80 | (_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx));  |
| 81 | #endif  |
| 82 |   |
| 83 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99  |
| 84 | /* Hyperbolic arc cosine of X. */  |
| 85 | __MATHCALL (acosh,, (_Mdouble_ __x));  |
| 86 | /* Hyperbolic arc sine of X. */  |
| 87 | __MATHCALL (asinh,, (_Mdouble_ __x));  |
| 88 | /* Hyperbolic arc tangent of X. */  |
| 89 | __MATHCALL (atanh,, (_Mdouble_ __x));  |
| 90 | #endif  |
| 91 |   |
| 92 | /* Exponential and logarithmic functions. */  |
| 93 |   |
| 94 | /* Exponential function of X. */  |
| 95 | __MATHCALL_VEC (exp,, (_Mdouble_ __x));  |
| 96 |   |
| 97 | /* Break VALUE into a normalized fraction and an integral power of 2. */  |
| 98 | __MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent));  |
| 99 |   |
| 100 | /* X times (two to the EXP power). */  |
| 101 | __MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent));  |
| 102 |   |
| 103 | /* Natural logarithm of X. */  |
| 104 | __MATHCALL_VEC (log,, (_Mdouble_ __x));  |
| 105 |   |
| 106 | /* Base-ten logarithm of X. */  |
| 107 | __MATHCALL (log10,, (_Mdouble_ __x));  |
| 108 |   |
| 109 | /* Break VALUE into integral and fractional parts. */  |
| 110 | __MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr)) __nonnull ((2));  |
| 111 |   |
| 112 | #if __GLIBC_USE (IEC_60559_FUNCS_EXT_C2X)  |
| 113 | /* Compute exponent to base ten. */  |
| 114 | __MATHCALL (exp10,, (_Mdouble_ __x));  |
| 115 | #endif  |
| 116 |   |
| 117 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99  |
| 118 | /* Return exp(X) - 1. */  |
| 119 | __MATHCALL (expm1,, (_Mdouble_ __x));  |
| 120 |   |
| 121 | /* Return log(1 + X). */  |
| 122 | __MATHCALL (log1p,, (_Mdouble_ __x));  |
| 123 |   |
| 124 | /* Return the base 2 signed integral exponent of X. */  |
| 125 | __MATHCALL (logb,, (_Mdouble_ __x));  |
| 126 | #endif  |
| 127 |   |
| 128 | #ifdef __USE_ISOC99  |
| 129 | /* Compute base-2 exponential of X. */  |
| 130 | __MATHCALL (exp2,, (_Mdouble_ __x));  |
| 131 |   |
| 132 | /* Compute base-2 logarithm of X. */  |
| 133 | __MATHCALL (log2,, (_Mdouble_ __x));  |
| 134 | #endif  |
| 135 |   |
| 136 |   |
| 137 | /* Power functions. */  |
| 138 |   |
| 139 | /* Return X to the Y power. */  |
| 140 | __MATHCALL_VEC (pow,, (_Mdouble_ __x, _Mdouble_ __y));  |
| 141 |   |
| 142 | /* Return the square root of X. */  |
| 143 | __MATHCALL (sqrt,, (_Mdouble_ __x));  |
| 144 |   |
| 145 | #if defined __USE_XOPEN || defined __USE_ISOC99  |
| 146 | /* Return `sqrt(X*X + Y*Y)'. */  |
| 147 | __MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));  |
| 148 | #endif  |
| 149 |   |
| 150 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99  |
| 151 | /* Return the cube root of X. */  |
| 152 | __MATHCALL (cbrt,, (_Mdouble_ __x));  |
| 153 | #endif  |
| 154 |   |
| 155 |   |
| 156 | /* Nearest integer, absolute value, and remainder functions. */  |
| 157 |   |
| 158 | /* Smallest integral value not less than X. */  |
| 159 | __MATHCALLX (ceil,, (_Mdouble_ __x), (__const__));  |
| 160 |   |
| 161 | /* Absolute value of X. */  |
| 162 | __MATHCALLX (fabs,, (_Mdouble_ __x), (__const__));  |
| 163 |   |
| 164 | /* Largest integer not greater than X. */  |
| 165 | __MATHCALLX (floor,, (_Mdouble_ __x), (__const__));  |
| 166 |   |
| 167 | /* Floating-point modulo remainder of X/Y. */  |
| 168 | __MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));  |
| 169 |   |
| 170 | #ifdef __USE_MISC  |
| 171 | # if ((!defined __cplusplus \  |
| 172 | || __cplusplus < 201103L /* isinf conflicts with C++11. */ \  |
| 173 | || __MATH_DECLARING_DOUBLE == 0)) /* isinff or isinfl don't. */ \  |
| 174 | && !__MATH_DECLARING_FLOATN  |
| 175 | /* Return 0 if VALUE is finite or NaN, +1 if it  |
| 176 | is +Infinity, -1 if it is -Infinity. */  |
| 177 | __MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));  |
| 178 | # endif  |
| 179 |   |
| 180 | # if !__MATH_DECLARING_FLOATN  |
| 181 | /* Return nonzero if VALUE is finite and not NaN. */  |
| 182 | __MATHDECL_1 (int,finite,, (_Mdouble_ __value)) __attribute__ ((__const__));  |
| 183 |   |
| 184 | /* Return the remainder of X/Y. */  |
| 185 | __MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));  |
| 186 |   |
| 187 |   |
| 188 | /* Return the fractional part of X after dividing out `ilogb (X)'. */  |
| 189 | __MATHCALL (significand,, (_Mdouble_ __x));  |
| 190 | # endif  |
| 191 |   |
| 192 | #endif /* Use misc. */  |
| 193 |   |
| 194 | #ifdef __USE_ISOC99  |
| 195 | /* Return X with its signed changed to Y's. */  |
| 196 | __MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));  |
| 197 | #endif  |
| 198 |   |
| 199 | #ifdef __USE_ISOC99  |
| 200 | /* Return representation of qNaN for double type. */  |
| 201 | __MATHCALL (nan,, (const char *__tagb));  |
| 202 | #endif  |
| 203 |   |
| 204 |   |
| 205 | #if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K)  |
| 206 | # if ((!defined __cplusplus \  |
| 207 | || __cplusplus < 201103L /* isnan conflicts with C++11. */ \  |
| 208 | || __MATH_DECLARING_DOUBLE == 0)) /* isnanf or isnanl don't. */ \  |
| 209 | && !__MATH_DECLARING_FLOATN  |
| 210 | /* Return nonzero if VALUE is not a number. */  |
| 211 | __MATHDECL_1 (int,isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));  |
| 212 | # endif  |
| 213 | #endif  |
| 214 |   |
| 215 | #if defined __USE_MISC || (defined __USE_XOPEN && __MATH_DECLARING_DOUBLE)  |
| 216 | /* Bessel functions. */  |
| 217 | __MATHCALL (j0,, (_Mdouble_));  |
| 218 | __MATHCALL (j1,, (_Mdouble_));  |
| 219 | __MATHCALL (jn,, (int, _Mdouble_));  |
| 220 | __MATHCALL (y0,, (_Mdouble_));  |
| 221 | __MATHCALL (y1,, (_Mdouble_));  |
| 222 | __MATHCALL (yn,, (int, _Mdouble_));  |
| 223 | #endif  |
| 224 |   |
| 225 |   |
| 226 | #if defined __USE_XOPEN || defined __USE_ISOC99  |
| 227 | /* Error and gamma functions. */  |
| 228 | __MATHCALL (erf,, (_Mdouble_));  |
| 229 | __MATHCALL (erfc,, (_Mdouble_));  |
| 230 | __MATHCALL (lgamma,, (_Mdouble_));  |
| 231 | #endif  |
| 232 |   |
| 233 | #ifdef __USE_ISOC99  |
| 234 | /* True gamma function. */  |
| 235 | __MATHCALL (tgamma,, (_Mdouble_));  |
| 236 | #endif  |
| 237 |   |
| 238 | #if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K)  |
| 239 | # if !__MATH_DECLARING_FLOATN  |
| 240 | /* Obsolete alias for `lgamma'. */  |
| 241 | __MATHCALL (gamma,, (_Mdouble_));  |
| 242 | # endif  |
| 243 | #endif  |
| 244 |   |
| 245 | #ifdef __USE_MISC  |
| 246 | /* Reentrant version of lgamma. This function uses the global variable  |
| 247 | `signgam'. The reentrant version instead takes a pointer and stores  |
| 248 | the value through it. */  |
| 249 | __MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp));  |
| 250 | #endif  |
| 251 |   |
| 252 |   |
| 253 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99  |
| 254 | /* Return the integer nearest X in the direction of the  |
| 255 | prevailing rounding mode. */  |
| 256 | __MATHCALL (rint,, (_Mdouble_ __x));  |
| 257 |   |
| 258 | /* Return X + epsilon if X < Y, X - epsilon if X > Y. */  |
| 259 | __MATHCALL (nextafter,, (_Mdouble_ __x, _Mdouble_ __y));  |
| 260 | # if defined __USE_ISOC99 && !defined __LDBL_COMPAT && !__MATH_DECLARING_FLOATN  |
| 261 | __MATHCALL (nexttoward,, (_Mdouble_ __x, long double __y));  |
| 262 | # endif  |
| 263 |   |
| 264 | # if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) || __MATH_DECLARING_FLOATN  |
| 265 | /* Return X - epsilon. */  |
| 266 | __MATHCALL (nextdown,, (_Mdouble_ __x));  |
| 267 | /* Return X + epsilon. */  |
| 268 | __MATHCALL (nextup,, (_Mdouble_ __x));  |
| 269 | # endif  |
| 270 |   |
| 271 | /* Return the remainder of integer divison X / Y with infinite precision. */  |
| 272 | __MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));  |
| 273 |   |
| 274 | # ifdef __USE_ISOC99  |
| 275 | /* Return X times (2 to the Nth power). */  |
| 276 | __MATHCALL (scalbn,, (_Mdouble_ __x, int __n));  |
| 277 | # endif  |
| 278 |   |
| 279 | /* Return the binary exponent of X, which must be nonzero. */  |
| 280 | __MATHDECL (int,ilogb,, (_Mdouble_ __x));  |
| 281 | #endif  |
| 282 |   |
| 283 | #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) || __MATH_DECLARING_FLOATN  |
| 284 | /* Like ilogb, but returning long int. */  |
| 285 | __MATHDECL (long int, llogb,, (_Mdouble_ __x));  |
| 286 | #endif  |
| 287 |   |
| 288 | #ifdef __USE_ISOC99  |
| 289 | /* Return X times (2 to the Nth power). */  |
| 290 | __MATHCALL (scalbln,, (_Mdouble_ __x, long int __n));  |
| 291 |   |
| 292 | /* Round X to integral value in floating-point format using current  |
| 293 | rounding direction, but do not raise inexact exception. */  |
| 294 | __MATHCALL (nearbyint,, (_Mdouble_ __x));  |
| 295 |   |
| 296 | /* Round X to nearest integral value, rounding halfway cases away from  |
| 297 | zero. */  |
| 298 | __MATHCALLX (round,, (_Mdouble_ __x), (__const__));  |
| 299 |   |
| 300 | /* Round X to the integral value in floating-point format nearest but  |
| 301 | not larger in magnitude. */  |
| 302 | __MATHCALLX (trunc,, (_Mdouble_ __x), (__const__));  |
| 303 |   |
| 304 | /* Compute remainder of X and Y and put in *QUO a value with sign of x/y  |
| 305 | and magnitude congruent `mod 2^n' to the magnitude of the integral  |
| 306 | quotient x/y, with n >= 3. */  |
| 307 | __MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo));  |
| 308 |   |
| 309 |   |
| 310 | /* Conversion functions. */  |
| 311 |   |
| 312 | /* Round X to nearest integral value according to current rounding  |
| 313 | direction. */  |
| 314 | __MATHDECL (long int,lrint,, (_Mdouble_ __x));  |
| 315 | __extension__  |
| 316 | __MATHDECL (long long int,llrint,, (_Mdouble_ __x));  |
| 317 |   |
| 318 | /* Round X to nearest integral value, rounding halfway cases away from  |
| 319 | zero. */  |
| 320 | __MATHDECL (long int,lround,, (_Mdouble_ __x));  |
| 321 | __extension__  |
| 322 | __MATHDECL (long long int,llround,, (_Mdouble_ __x));  |
| 323 |   |
| 324 |   |
| 325 | /* Return positive difference between X and Y. */  |
| 326 | __MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y));  |
| 327 |   |
| 328 | /* Return maximum numeric value from X and Y. */  |
| 329 | __MATHCALLX (fmax,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));  |
| 330 |   |
| 331 | /* Return minimum numeric value from X and Y. */  |
| 332 | __MATHCALLX (fmin,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));  |
| 333 |   |
| 334 | /* Multiply-add function computed as a ternary operation. */  |
| 335 | __MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z));  |
| 336 | #endif /* Use ISO C99. */  |
| 337 |   |
| 338 | #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X) || __MATH_DECLARING_FLOATN  |
| 339 | /* Round X to nearest integer value, rounding halfway cases to even. */  |
| 340 | __MATHCALLX (roundeven,, (_Mdouble_ __x), (__const__));  |
| 341 |   |
| 342 | /* Round X to nearest signed integer value, not raising inexact, with  |
| 343 | control of rounding direction and width of result. */  |
| 344 | __MATHDECL (__intmax_t, fromfp,, (_Mdouble_ __x, int __round,  |
| 345 | unsigned int __width));  |
| 346 |   |
| 347 | /* Round X to nearest unsigned integer value, not raising inexact,  |
| 348 | with control of rounding direction and width of result. */  |
| 349 | __MATHDECL (__uintmax_t, ufromfp,, (_Mdouble_ __x, int __round,  |
| 350 | unsigned int __width));  |
| 351 |   |
| 352 | /* Round X to nearest signed integer value, raising inexact for  |
| 353 | non-integers, with control of rounding direction and width of  |
| 354 | result. */  |
| 355 | __MATHDECL (__intmax_t, fromfpx,, (_Mdouble_ __x, int __round,  |
| 356 | unsigned int __width));  |
| 357 |   |
| 358 | /* Round X to nearest unsigned integer value, raising inexact for  |
| 359 | non-integers, with control of rounding direction and width of  |
| 360 | result. */  |
| 361 | __MATHDECL (__uintmax_t, ufromfpx,, (_Mdouble_ __x, int __round,  |
| 362 | unsigned int __width));  |
| 363 |   |
| 364 | /* Return value with maximum magnitude. */  |
| 365 | __MATHCALLX (fmaxmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));  |
| 366 |   |
| 367 | /* Return value with minimum magnitude. */  |
| 368 | __MATHCALLX (fminmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));  |
| 369 |   |
| 370 | /* Canonicalize floating-point representation. */  |
| 371 | __MATHDECL_1 (int, canonicalize,, (_Mdouble_ *__cx, const _Mdouble_ *__x));  |
| 372 | #endif  |
| 373 |   |
| 374 | #if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN  |
| 375 | /* Total order operation. */  |
| 376 | __MATHDECL_1 (int, totalorder,, (const _Mdouble_ *__x,  |
| 377 | const _Mdouble_ *__y))  |
| 378 | __attribute_pure__;  |
| 379 |   |
| 380 | /* Total order operation on absolute values. */  |
| 381 | __MATHDECL_1 (int, totalordermag,, (const _Mdouble_ *__x,  |
| 382 | const _Mdouble_ *__y))  |
| 383 | __attribute_pure__;  |
| 384 |   |
| 385 | /* Get NaN payload. */  |
| 386 | __MATHCALL (getpayload,, (const _Mdouble_ *__x));  |
| 387 |   |
| 388 | /* Set quiet NaN payload. */  |
| 389 | __MATHDECL_1 (int, setpayload,, (_Mdouble_ *__x, _Mdouble_ __payload));  |
| 390 |   |
| 391 | /* Set signaling NaN payload. */  |
| 392 | __MATHDECL_1 (int, setpayloadsig,, (_Mdouble_ *__x, _Mdouble_ __payload));  |
| 393 | #endif  |
| 394 |   |
| 395 | #if (defined __USE_MISC || (defined __USE_XOPEN_EXTENDED \  |
| 396 | && __MATH_DECLARING_DOUBLE \  |
| 397 | && !defined __USE_XOPEN2K8)) \  |
| 398 | && !__MATH_DECLARING_FLOATN  |
| 399 | /* Return X times (2 to the Nth power). */  |
| 400 | __MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));  |
| 401 | #endif  |
| 402 | |