| 1 | // Mathematical Special Functions for -*- C++ -*-  |
| 2 |   |
| 3 | // Copyright (C) 2006-2019 Free Software Foundation, Inc.  |
| 4 | //  |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free  |
| 6 | // software; you can redistribute it and/or modify it under the  |
| 7 | // terms of the GNU General Public License as published by the  |
| 8 | // Free Software Foundation; either version 3, or (at your option)  |
| 9 | // any later version.  |
| 10 |   |
| 11 | // This library is distributed in the hope that it will be useful,  |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of  |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  |
| 14 | // GNU General Public License for more details.  |
| 15 |   |
| 16 | // Under Section 7 of GPL version 3, you are granted additional  |
| 17 | // permissions described in the GCC Runtime Library Exception, version  |
| 18 | // 3.1, as published by the Free Software Foundation.  |
| 19 |   |
| 20 | // You should have received a copy of the GNU General Public License and  |
| 21 | // a copy of the GCC Runtime Library Exception along with this program;  |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see  |
| 23 | // <http://www.gnu.org/licenses/>.  |
| 24 |   |
| 25 | /** @file bits/specfun.h  |
| 26 | * This is an internal header file, included by other library headers.  |
| 27 | * Do not attempt to use it directly. @headername{cmath}  |
| 28 | */  |
| 29 |   |
| 30 | #ifndef _GLIBCXX_BITS_SPECFUN_H  |
| 31 | #define _GLIBCXX_BITS_SPECFUN_H 1  |
| 32 |   |
| 33 | #pragma GCC visibility push(default)  |
| 34 |   |
| 35 | #include <bits/c++config.h>  |
| 36 |   |
| 37 | #define __STDCPP_MATH_SPEC_FUNCS__ 201003L  |
| 38 |   |
| 39 | #define __cpp_lib_math_special_functions 201603L  |
| 40 |   |
| 41 | #if __cplusplus <= 201403L && __STDCPP_WANT_MATH_SPEC_FUNCS__ == 0  |
| 42 | # error include <cmath> and define __STDCPP_WANT_MATH_SPEC_FUNCS__  |
| 43 | #endif  |
| 44 |   |
| 45 | #include <bits/stl_algobase.h>  |
| 46 | #include <limits>  |
| 47 | #include <type_traits>  |
| 48 |   |
| 49 | #include <tr1/gamma.tcc>  |
| 50 | #include <tr1/bessel_function.tcc>  |
| 51 | #include <tr1/beta_function.tcc>  |
| 52 | #include <tr1/ell_integral.tcc>  |
| 53 | #include <tr1/exp_integral.tcc>  |
| 54 | #include <tr1/hypergeometric.tcc>  |
| 55 | #include <tr1/legendre_function.tcc>  |
| 56 | #include <tr1/modified_bessel_func.tcc>  |
| 57 | #include <tr1/poly_hermite.tcc>  |
| 58 | #include <tr1/poly_laguerre.tcc>  |
| 59 | #include <tr1/riemann_zeta.tcc>  |
| 60 |   |
| 61 | namespace std _GLIBCXX_VISIBILITY(default)  |
| 62 | {  |
| 63 | _GLIBCXX_BEGIN_NAMESPACE_VERSION  |
| 64 |   |
| 65 | /**  |
| 66 | * @defgroup mathsf Mathematical Special Functions  |
| 67 | * @ingroup numerics  |
| 68 | *  |
| 69 | * A collection of advanced mathematical special functions,  |
| 70 | * defined by ISO/IEC IS 29124.  |
| 71 | * @{  |
| 72 | */  |
| 73 |   |
| 74 | /**  |
| 75 | * @mainpage Mathematical Special Functions  |
| 76 | *  |
| 77 | * @section intro Introduction and History  |
| 78 | * The first significant library upgrade on the road to C++2011,  |
| 79 | * <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf">  |
| 80 | * TR1</a>, included a set of 23 mathematical functions that significantly  |
| 81 | * extended the standard transcendental functions inherited from C and declared  |
| 82 | * in @<cmath@>.  |
| 83 | *  |
| 84 | * Although most components from TR1 were eventually adopted for C++11 these  |
| 85 | * math functions were left behind out of concern for implementability.  |
| 86 | * The math functions were published as a separate international standard  |
| 87 | * <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3060.pdf">  |
| 88 | * IS 29124 - Extensions to the C++ Library to Support Mathematical Special  |
| 89 | * Functions</a>.  |
| 90 | *  |
| 91 | * For C++17 these functions were incorporated into the main standard.  |
| 92 | *  |
| 93 | * @section contents Contents  |
| 94 | * The following functions are implemented in namespace @c std:  |
| 95 | * - @ref assoc_laguerre "assoc_laguerre - Associated Laguerre functions"  |
| 96 | * - @ref assoc_legendre "assoc_legendre - Associated Legendre functions"  |
| 97 | * - @ref beta "beta - Beta functions"  |
| 98 | * - @ref comp_ellint_1 "comp_ellint_1 - Complete elliptic functions of the first kind"  |
| 99 | * - @ref comp_ellint_2 "comp_ellint_2 - Complete elliptic functions of the second kind"  |
| 100 | * - @ref comp_ellint_3 "comp_ellint_3 - Complete elliptic functions of the third kind"  |
| 101 | * - @ref cyl_bessel_i "cyl_bessel_i - Regular modified cylindrical Bessel functions"  |
| 102 | * - @ref cyl_bessel_j "cyl_bessel_j - Cylindrical Bessel functions of the first kind"  |
| 103 | * - @ref cyl_bessel_k "cyl_bessel_k - Irregular modified cylindrical Bessel functions"  |
| 104 | * - @ref cyl_neumann "cyl_neumann - Cylindrical Neumann functions or Cylindrical Bessel functions of the second kind"  |
| 105 | * - @ref ellint_1 "ellint_1 - Incomplete elliptic functions of the first kind"  |
| 106 | * - @ref ellint_2 "ellint_2 - Incomplete elliptic functions of the second kind"  |
| 107 | * - @ref ellint_3 "ellint_3 - Incomplete elliptic functions of the third kind"  |
| 108 | * - @ref expint "expint - The exponential integral"  |
| 109 | * - @ref hermite "hermite - Hermite polynomials"  |
| 110 | * - @ref laguerre "laguerre - Laguerre functions"  |
| 111 | * - @ref legendre "legendre - Legendre polynomials"  |
| 112 | * - @ref riemann_zeta "riemann_zeta - The Riemann zeta function"  |
| 113 | * - @ref sph_bessel "sph_bessel - Spherical Bessel functions"  |
| 114 | * - @ref sph_legendre "sph_legendre - Spherical Legendre functions"  |
| 115 | * - @ref sph_neumann "sph_neumann - Spherical Neumann functions"  |
| 116 | *  |
| 117 | * The hypergeometric functions were stricken from the TR29124 and C++17  |
| 118 | * versions of this math library because of implementation concerns.  |
| 119 | * However, since they were in the TR1 version and since they are popular  |
| 120 | * we kept them as an extension in namespace @c __gnu_cxx:  |
| 121 | * - @ref __gnu_cxx::conf_hyperg "conf_hyperg - Confluent hypergeometric functions"  |
| 122 | * - @ref __gnu_cxx::hyperg "hyperg - Hypergeometric functions"  |
| 123 | *  |
| 124 | * @section general General Features  |
| 125 | *  |
| 126 | * @subsection promotion Argument Promotion  |
| 127 | * The arguments suppled to the non-suffixed functions will be promoted  |
| 128 | * according to the following rules:  |
| 129 | * 1. If any argument intended to be floating point is given an integral value  |
| 130 | * That integral value is promoted to double.  |
| 131 | * 2. All floating point arguments are promoted up to the largest floating  |
| 132 | * point precision among them.  |
| 133 | *  |
| 134 | * @subsection NaN NaN Arguments  |
| 135 | * If any of the floating point arguments supplied to these functions is  |
| 136 | * invalid or NaN (std::numeric_limits<Tp>::quiet_NaN),  |
| 137 | * the value NaN is returned.  |
| 138 | *  |
| 139 | * @section impl Implementation  |
| 140 | *  |
| 141 | * We strive to implement the underlying math with type generic algorithms  |
| 142 | * to the greatest extent possible. In practice, the functions are thin  |
| 143 | * wrappers that dispatch to function templates. Type dependence is  |
| 144 | * controlled with std::numeric_limits and functions thereof.  |
| 145 | *  |
| 146 | * We don't promote @c float to @c double or @c double to <tt>long double</tt>  |
| 147 | * reflexively. The goal is for @c float functions to operate more quickly,  |
| 148 | * at the cost of @c float accuracy and possibly a smaller domain of validity.  |
| 149 | * Similaryly, <tt>long double</tt> should give you more dynamic range  |
| 150 | * and slightly more pecision than @c double on many systems.  |
| 151 | *  |
| 152 | * @section testing Testing  |
| 153 | *  |
| 154 | * These functions have been tested against equivalent implementations  |
| 155 | * from the <a href="http://www.gnu.org/software/gsl">  |
| 156 | * Gnu Scientific Library, GSL</a> and  |
| 157 | * <a href="http://www.boost.org/doc/libs/1_60_0/libs/math/doc/html/index.html>Boost</a>  |
| 158 | * and the ratio  |
| 159 | * @f[  |
| 160 | * \frac{|f - f_{test}|}{|f_{test}|}  |
| 161 | * @f]  |
| 162 | * is generally found to be within 10^-15 for 64-bit double on linux-x86_64 systems  |
| 163 | * over most of the ranges of validity.  |
| 164 | *   |
| 165 | * @todo Provide accuracy comparisons on a per-function basis for a small  |
| 166 | * number of targets.  |
| 167 | *  |
| 168 | * @section bibliography General Bibliography  |
| 169 | *  |
| 170 | * @see Abramowitz and Stegun: Handbook of Mathematical Functions,  |
| 171 | * with Formulas, Graphs, and Mathematical Tables  |
| 172 | * Edited by Milton Abramowitz and Irene A. Stegun,  |
| 173 | * National Bureau of Standards Applied Mathematics Series - 55  |
| 174 | * Issued June 1964, Tenth Printing, December 1972, with corrections  |
| 175 | * Electronic versions of A&S abound including both pdf and navigable html.  |
| 176 | * @see for example http://people.math.sfu.ca/~cbm/aands/  |
| 177 | *  |
| 178 | * @see The old A&S has been redone as the  |
| 179 | * NIST Digital Library of Mathematical Functions: http://dlmf.nist.gov/  |
| 180 | * This version is far more navigable and includes more recent work.  |
| 181 | *  |
| 182 | * @see An Atlas of Functions: with Equator, the Atlas Function Calculator  |
| 183 | * 2nd Edition, by Oldham, Keith B., Myland, Jan, Spanier, Jerome  |
| 184 | *  |
| 185 | * @see Asymptotics and Special Functions by Frank W. J. Olver,  |
| 186 | * Academic Press, 1974  |
| 187 | *  |
| 188 | * @see Numerical Recipes in C, The Art of Scientific Computing,  |
| 189 | * by William H. Press, Second Ed., Saul A. Teukolsky,  |
| 190 | * William T. Vetterling, and Brian P. Flannery,  |
| 191 | * Cambridge University Press, 1992  |
| 192 | *  |
| 193 | * @see The Special Functions and Their Approximations: Volumes 1 and 2,  |
| 194 | * by Yudell L. Luke, Academic Press, 1969  |
| 195 | */  |
| 196 |   |
| 197 | // Associated Laguerre polynomials  |
| 198 |   |
| 199 | /**  |
| 200 | * Return the associated Laguerre polynomial of order @c n,  |
| 201 | * degree @c m: @f$ L_n^m(x) @f$ for @c float argument.  |
| 202 | *  |
| 203 | * @see assoc_laguerre for more details.  |
| 204 | */  |
| 205 | inline float  |
| 206 | assoc_laguerref(unsigned int __n, unsigned int __m, float __x)  |
| 207 | { return __detail::__assoc_laguerre<float>(__n, __m, __x); }  |
| 208 |   |
| 209 | /**  |
| 210 | * Return the associated Laguerre polynomial of order @c n,  |
| 211 | * degree @c m: @f$ L_n^m(x) @f$.  |
| 212 | *  |
| 213 | * @see assoc_laguerre for more details.  |
| 214 | */  |
| 215 | inline long double  |
| 216 | assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)  |
| 217 | { return __detail::__assoc_laguerre<long double>(__n, __m, __x); }  |
| 218 |   |
| 219 | /**  |
| 220 | * Return the associated Laguerre polynomial of nonnegative order @c n,  |
| 221 | * nonnegative degree @c m and real argument @c x: @f$ L_n^m(x) @f$.  |
| 222 | *  |
| 223 | * The associated Laguerre function of real degree @f$ \alpha @f$,  |
| 224 | * @f$ L_n^\alpha(x) @f$, is defined by  |
| 225 | * @f[  |
| 226 | * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}  |
| 227 | * {}_1F_1(-n; \alpha + 1; x)  |
| 228 | * @f]  |
| 229 | * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and  |
| 230 | * @f$ {}_1F_1(a; c; x) @f$ is the confluent hypergeometric function.  |
| 231 | *  |
| 232 | * The associated Laguerre polynomial is defined for integral  |
| 233 | * degree @f$ \alpha = m @f$ by:  |
| 234 | * @f[  |
| 235 | * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)  |
| 236 | * @f]  |
| 237 | * where the Laguerre polynomial is defined by:  |
| 238 | * @f[  |
| 239 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})  |
| 240 | * @f]  |
| 241 | * and @f$ x >= 0 @f$.  |
| 242 | * @see laguerre for details of the Laguerre function of degree @c n  |
| 243 | *  |
| 244 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 245 | * @param __n The order of the Laguerre function, <tt>__n >= 0</tt>.  |
| 246 | * @param __m The degree of the Laguerre function, <tt>__m >= 0</tt>.  |
| 247 | * @param __x The argument of the Laguerre function, <tt>__x >= 0</tt>.  |
| 248 | * @throw std::domain_error if <tt>__x < 0</tt>.  |
| 249 | */  |
| 250 | template<typename _Tp>  |
| 251 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 252 | assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)  |
| 253 | {  |
| 254 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 255 | return __detail::__assoc_laguerre<__type>(__n, __m, __x);  |
| 256 | }  |
| 257 |   |
| 258 | // Associated Legendre functions  |
| 259 |   |
| 260 | /**  |
| 261 | * Return the associated Legendre function of degree @c l and order @c m  |
| 262 | * for @c float argument.  |
| 263 | *  |
| 264 | * @see assoc_legendre for more details.  |
| 265 | */  |
| 266 | inline float  |
| 267 | assoc_legendref(unsigned int __l, unsigned int __m, float __x)  |
| 268 | { return __detail::__assoc_legendre_p<float>(__l, __m, __x); }  |
| 269 |   |
| 270 | /**  |
| 271 | * Return the associated Legendre function of degree @c l and order @c m.  |
| 272 | *  |
| 273 | * @see assoc_legendre for more details.  |
| 274 | */  |
| 275 | inline long double  |
| 276 | assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)  |
| 277 | { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }  |
| 278 |   |
| 279 |   |
| 280 | /**  |
| 281 | * Return the associated Legendre function of degree @c l and order @c m.  |
| 282 | *  |
| 283 | * The associated Legendre function is derived from the Legendre function  |
| 284 | * @f$ P_l(x) @f$ by the Rodrigues formula:  |
| 285 | * @f[  |
| 286 | * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)  |
| 287 | * @f]  |
| 288 | * @see legendre for details of the Legendre function of degree @c l  |
| 289 | *  |
| 290 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 291 | * @param __l The degree <tt>__l >= 0</tt>.  |
| 292 | * @param __m The order <tt>__m <= l</tt>.  |
| 293 | * @param __x The argument, <tt>abs(__x) <= 1</tt>.  |
| 294 | * @throw std::domain_error if <tt>abs(__x) > 1</tt>.  |
| 295 | */  |
| 296 | template<typename _Tp>  |
| 297 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 298 | assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)  |
| 299 | {  |
| 300 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 301 | return __detail::__assoc_legendre_p<__type>(__l, __m, __x);  |
| 302 | }  |
| 303 |   |
| 304 | // Beta functions  |
| 305 |   |
| 306 | /**  |
| 307 | * Return the beta function, @f$ B(a,b) @f$, for @c float parameters @c a, @c b.  |
| 308 | *  |
| 309 | * @see beta for more details.  |
| 310 | */  |
| 311 | inline float  |
| 312 | betaf(float __a, float __b)  |
| 313 | { return __detail::__beta<float>(__a, __b); }  |
| 314 |   |
| 315 | /**  |
| 316 | * Return the beta function, @f$B(a,b)@f$, for long double  |
| 317 | * parameters @c a, @c b.  |
| 318 | *  |
| 319 | * @see beta for more details.  |
| 320 | */  |
| 321 | inline long double  |
| 322 | betal(long double __a, long double __b)  |
| 323 | { return __detail::__beta<long double>(__a, __b); }  |
| 324 |   |
| 325 | /**  |
| 326 | * Return the beta function, @f$B(a,b)@f$, for real parameters @c a, @c b.  |
| 327 | *  |
| 328 | * The beta function is defined by  |
| 329 | * @f[  |
| 330 | * B(a,b) = \int_0^1 t^{a - 1} (1 - t)^{b - 1} dt  |
| 331 | * = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}  |
| 332 | * @f]  |
| 333 | * where @f$ a > 0 @f$ and @f$ b > 0 @f$  |
| 334 | *  |
| 335 | * @tparam _Tpa The floating-point type of the parameter @c __a.  |
| 336 | * @tparam _Tpb The floating-point type of the parameter @c __b.  |
| 337 | * @param __a The first argument of the beta function, <tt> __a > 0 </tt>.  |
| 338 | * @param __b The second argument of the beta function, <tt> __b > 0 </tt>.  |
| 339 | * @throw std::domain_error if <tt> __a < 0 </tt> or <tt> __b < 0 </tt>.  |
| 340 | */  |
| 341 | template<typename _Tpa, typename _Tpb>  |
| 342 | inline typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type  |
| 343 | beta(_Tpa __a, _Tpb __b)  |
| 344 | {  |
| 345 | typedef typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type __type;  |
| 346 | return __detail::__beta<__type>(__a, __b);  |
| 347 | }  |
| 348 |   |
| 349 | // Complete elliptic integrals of the first kind  |
| 350 |   |
| 351 | /**  |
| 352 | * Return the complete elliptic integral of the first kind @f$ E(k) @f$  |
| 353 | * for @c float modulus @c k.  |
| 354 | *  |
| 355 | * @see comp_ellint_1 for details.  |
| 356 | */  |
| 357 | inline float  |
| 358 | comp_ellint_1f(float __k)  |
| 359 | { return __detail::__comp_ellint_1<float>(__k); }  |
| 360 |   |
| 361 | /**  |
| 362 | * Return the complete elliptic integral of the first kind @f$ E(k) @f$  |
| 363 | * for long double modulus @c k.  |
| 364 | *  |
| 365 | * @see comp_ellint_1 for details.  |
| 366 | */  |
| 367 | inline long double  |
| 368 | comp_ellint_1l(long double __k)  |
| 369 | { return __detail::__comp_ellint_1<long double>(__k); }  |
| 370 |   |
| 371 | /**  |
| 372 | * Return the complete elliptic integral of the first kind  |
| 373 | * @f$ K(k) @f$ for real modulus @c k.  |
| 374 | *  |
| 375 | * The complete elliptic integral of the first kind is defined as  |
| 376 | * @f[  |
| 377 | * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}  |
| 378 | * {\sqrt{1 - k^2 sin^2\theta}}  |
| 379 | * @f]  |
| 380 | * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the  |
| 381 | * first kind and the modulus @f$ |k| <= 1 @f$.  |
| 382 | * @see ellint_1 for details of the incomplete elliptic function  |
| 383 | * of the first kind.  |
| 384 | *  |
| 385 | * @tparam _Tp The floating-point type of the modulus @c __k.  |
| 386 | * @param __k The modulus, <tt> abs(__k) <= 1 </tt>  |
| 387 | * @throw std::domain_error if <tt> abs(__k) > 1 </tt>.  |
| 388 | */  |
| 389 | template<typename _Tp>  |
| 390 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 391 | comp_ellint_1(_Tp __k)  |
| 392 | {  |
| 393 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 394 | return __detail::__comp_ellint_1<__type>(__k);  |
| 395 | }  |
| 396 |   |
| 397 | // Complete elliptic integrals of the second kind  |
| 398 |   |
| 399 | /**  |
| 400 | * Return the complete elliptic integral of the second kind @f$ E(k) @f$  |
| 401 | * for @c float modulus @c k.  |
| 402 | *  |
| 403 | * @see comp_ellint_2 for details.  |
| 404 | */  |
| 405 | inline float  |
| 406 | comp_ellint_2f(float __k)  |
| 407 | { return __detail::__comp_ellint_2<float>(__k); }  |
| 408 |   |
| 409 | /**  |
| 410 | * Return the complete elliptic integral of the second kind @f$ E(k) @f$  |
| 411 | * for long double modulus @c k.  |
| 412 | *  |
| 413 | * @see comp_ellint_2 for details.  |
| 414 | */  |
| 415 | inline long double  |
| 416 | comp_ellint_2l(long double __k)  |
| 417 | { return __detail::__comp_ellint_2<long double>(__k); }  |
| 418 |   |
| 419 | /**  |
| 420 | * Return the complete elliptic integral of the second kind @f$ E(k) @f$  |
| 421 | * for real modulus @c k.  |
| 422 | *  |
| 423 | * The complete elliptic integral of the second kind is defined as  |
| 424 | * @f[  |
| 425 | * E(k) = E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}  |
| 426 | * @f]  |
| 427 | * where @f$ E(k,\phi) @f$ is the incomplete elliptic integral of the  |
| 428 | * second kind and the modulus @f$ |k| <= 1 @f$.  |
| 429 | * @see ellint_2 for details of the incomplete elliptic function  |
| 430 | * of the second kind.  |
| 431 | *  |
| 432 | * @tparam _Tp The floating-point type of the modulus @c __k.  |
| 433 | * @param __k The modulus, @c abs(__k) <= 1  |
| 434 | * @throw std::domain_error if @c abs(__k) > 1.  |
| 435 | */  |
| 436 | template<typename _Tp>  |
| 437 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 438 | comp_ellint_2(_Tp __k)  |
| 439 | {  |
| 440 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 441 | return __detail::__comp_ellint_2<__type>(__k);  |
| 442 | }  |
| 443 |   |
| 444 | // Complete elliptic integrals of the third kind  |
| 445 |   |
| 446 | /**  |
| 447 | * @brief Return the complete elliptic integral of the third kind  |
| 448 | * @f$ \Pi(k,\nu) @f$ for @c float modulus @c k.  |
| 449 | *  |
| 450 | * @see comp_ellint_3 for details.  |
| 451 | */  |
| 452 | inline float  |
| 453 | comp_ellint_3f(float __k, float __nu)  |
| 454 | { return __detail::__comp_ellint_3<float>(__k, __nu); }  |
| 455 |   |
| 456 | /**  |
| 457 | * @brief Return the complete elliptic integral of the third kind  |
| 458 | * @f$ \Pi(k,\nu) @f$ for <tt>long double</tt> modulus @c k.  |
| 459 | *  |
| 460 | * @see comp_ellint_3 for details.  |
| 461 | */  |
| 462 | inline long double  |
| 463 | comp_ellint_3l(long double __k, long double __nu)  |
| 464 | { return __detail::__comp_ellint_3<long double>(__k, __nu); }  |
| 465 |   |
| 466 | /**  |
| 467 | * Return the complete elliptic integral of the third kind  |
| 468 | * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ for real modulus @c k.  |
| 469 | *  |
| 470 | * The complete elliptic integral of the third kind is defined as  |
| 471 | * @f[  |
| 472 | * \Pi(k,\nu) = \Pi(k,\nu,\pi/2) = \int_0^{\pi/2}  |
| 473 | * \frac{d\theta}  |
| 474 | * {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}  |
| 475 | * @f]  |
| 476 | * where @f$ \Pi(k,\nu,\phi) @f$ is the incomplete elliptic integral of the  |
| 477 | * second kind and the modulus @f$ |k| <= 1 @f$.  |
| 478 | * @see ellint_3 for details of the incomplete elliptic function  |
| 479 | * of the third kind.  |
| 480 | *  |
| 481 | * @tparam _Tp The floating-point type of the modulus @c __k.  |
| 482 | * @tparam _Tpn The floating-point type of the argument @c __nu.  |
| 483 | * @param __k The modulus, @c abs(__k) <= 1  |
| 484 | * @param __nu The argument  |
| 485 | * @throw std::domain_error if @c abs(__k) > 1.  |
| 486 | */  |
| 487 | template<typename _Tp, typename _Tpn>  |
| 488 | inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type  |
| 489 | comp_ellint_3(_Tp __k, _Tpn __nu)  |
| 490 | {  |
| 491 | typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;  |
| 492 | return __detail::__comp_ellint_3<__type>(__k, __nu);  |
| 493 | }  |
| 494 |   |
| 495 | // Regular modified cylindrical Bessel functions  |
| 496 |   |
| 497 | /**  |
| 498 | * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$  |
| 499 | * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$.  |
| 500 | *  |
| 501 | * @see cyl_bessel_i for setails.  |
| 502 | */  |
| 503 | inline float  |
| 504 | cyl_bessel_if(float __nu, float __x)  |
| 505 | { return __detail::__cyl_bessel_i<float>(__nu, __x); }  |
| 506 |   |
| 507 | /**  |
| 508 | * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$  |
| 509 | * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$.  |
| 510 | *  |
| 511 | * @see cyl_bessel_i for setails.  |
| 512 | */  |
| 513 | inline long double  |
| 514 | cyl_bessel_il(long double __nu, long double __x)  |
| 515 | { return __detail::__cyl_bessel_i<long double>(__nu, __x); }  |
| 516 |   |
| 517 | /**  |
| 518 | * Return the regular modified Bessel function @f$ I_{\nu}(x) @f$  |
| 519 | * for real order @f$ \nu @f$ and argument @f$ x >= 0 @f$.  |
| 520 | *  |
| 521 | * The regular modified cylindrical Bessel function is:  |
| 522 | * @f[  |
| 523 | * I_{\nu}(x) = i^{-\nu}J_\nu(ix) = \sum_{k=0}^{\infty}  |
| 524 | * \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}  |
| 525 | * @f]  |
| 526 | *  |
| 527 | * @tparam _Tpnu The floating-point type of the order @c __nu.  |
| 528 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 529 | * @param __nu The order  |
| 530 | * @param __x The argument, <tt> __x >= 0 </tt>  |
| 531 | * @throw std::domain_error if <tt> __x < 0 </tt>.  |
| 532 | */  |
| 533 | template<typename _Tpnu, typename _Tp>  |
| 534 | inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type  |
| 535 | cyl_bessel_i(_Tpnu __nu, _Tp __x)  |
| 536 | {  |
| 537 | typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;  |
| 538 | return __detail::__cyl_bessel_i<__type>(__nu, __x);  |
| 539 | }  |
| 540 |   |
| 541 | // Cylindrical Bessel functions (of the first kind)  |
| 542 |   |
| 543 | /**  |
| 544 | * Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$  |
| 545 | * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$.  |
| 546 | *  |
| 547 | * @see cyl_bessel_j for setails.  |
| 548 | */  |
| 549 | inline float  |
| 550 | cyl_bessel_jf(float __nu, float __x)  |
| 551 | { return __detail::__cyl_bessel_j<float>(__nu, __x); }  |
| 552 |   |
| 553 | /**  |
| 554 | * Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$  |
| 555 | * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$.  |
| 556 | *  |
| 557 | * @see cyl_bessel_j for setails.  |
| 558 | */  |
| 559 | inline long double  |
| 560 | cyl_bessel_jl(long double __nu, long double __x)  |
| 561 | { return __detail::__cyl_bessel_j<long double>(__nu, __x); }  |
| 562 |   |
| 563 | /**  |
| 564 | * Return the Bessel function @f$ J_{\nu}(x) @f$ of real order @f$ \nu @f$  |
| 565 | * and argument @f$ x >= 0 @f$.  |
| 566 | *  |
| 567 | * The cylindrical Bessel function is:  |
| 568 | * @f[  |
| 569 | * J_{\nu}(x) = \sum_{k=0}^{\infty}  |
| 570 | * \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}  |
| 571 | * @f]  |
| 572 | *  |
| 573 | * @tparam _Tpnu The floating-point type of the order @c __nu.  |
| 574 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 575 | * @param __nu The order  |
| 576 | * @param __x The argument, <tt> __x >= 0 </tt>  |
| 577 | * @throw std::domain_error if <tt> __x < 0 </tt>.  |
| 578 | */  |
| 579 | template<typename _Tpnu, typename _Tp>  |
| 580 | inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type  |
| 581 | cyl_bessel_j(_Tpnu __nu, _Tp __x)  |
| 582 | {  |
| 583 | typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;  |
| 584 | return __detail::__cyl_bessel_j<__type>(__nu, __x);  |
| 585 | }  |
| 586 |   |
| 587 | // Irregular modified cylindrical Bessel functions  |
| 588 |   |
| 589 | /**  |
| 590 | * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$  |
| 591 | * for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$.  |
| 592 | *  |
| 593 | * @see cyl_bessel_k for setails.  |
| 594 | */  |
| 595 | inline float  |
| 596 | cyl_bessel_kf(float __nu, float __x)  |
| 597 | { return __detail::__cyl_bessel_k<float>(__nu, __x); }  |
| 598 |   |
| 599 | /**  |
| 600 | * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$  |
| 601 | * for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$.  |
| 602 | *  |
| 603 | * @see cyl_bessel_k for setails.  |
| 604 | */  |
| 605 | inline long double  |
| 606 | cyl_bessel_kl(long double __nu, long double __x)  |
| 607 | { return __detail::__cyl_bessel_k<long double>(__nu, __x); }  |
| 608 |   |
| 609 | /**  |
| 610 | * Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$  |
| 611 | * of real order @f$ \nu @f$ and argument @f$ x @f$.  |
| 612 | *  |
| 613 | * The irregular modified Bessel function is defined by:  |
| 614 | * @f[  |
| 615 | * K_{\nu}(x) = \frac{\pi}{2}  |
| 616 | * \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}  |
| 617 | * @f]  |
| 618 | * where for integral @f$ \nu = n @f$ a limit is taken:  |
| 619 | * @f$ lim_{\nu \to n} @f$.  |
| 620 | * For negative argument we have simply:  |
| 621 | * @f[  |
| 622 | * K_{-\nu}(x) = K_{\nu}(x)  |
| 623 | * @f]  |
| 624 | *  |
| 625 | * @tparam _Tpnu The floating-point type of the order @c __nu.  |
| 626 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 627 | * @param __nu The order  |
| 628 | * @param __x The argument, <tt> __x >= 0 </tt>  |
| 629 | * @throw std::domain_error if <tt> __x < 0 </tt>.  |
| 630 | */  |
| 631 | template<typename _Tpnu, typename _Tp>  |
| 632 | inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type  |
| 633 | cyl_bessel_k(_Tpnu __nu, _Tp __x)  |
| 634 | {  |
| 635 | typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;  |
| 636 | return __detail::__cyl_bessel_k<__type>(__nu, __x);  |
| 637 | }  |
| 638 |   |
| 639 | // Cylindrical Neumann functions  |
| 640 |   |
| 641 | /**  |
| 642 | * Return the Neumann function @f$ N_{\nu}(x) @f$  |
| 643 | * of @c float order @f$ \nu @f$ and argument @f$ x @f$.  |
| 644 | *  |
| 645 | * @see cyl_neumann for setails.  |
| 646 | */  |
| 647 | inline float  |
| 648 | cyl_neumannf(float __nu, float __x)  |
| 649 | { return __detail::__cyl_neumann_n<float>(__nu, __x); }  |
| 650 |   |
| 651 | /**  |
| 652 | * Return the Neumann function @f$ N_{\nu}(x) @f$  |
| 653 | * of <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x @f$.  |
| 654 | *  |
| 655 | * @see cyl_neumann for setails.  |
| 656 | */  |
| 657 | inline long double  |
| 658 | cyl_neumannl(long double __nu, long double __x)  |
| 659 | { return __detail::__cyl_neumann_n<long double>(__nu, __x); }  |
| 660 |   |
| 661 | /**  |
| 662 | * Return the Neumann function @f$ N_{\nu}(x) @f$  |
| 663 | * of real order @f$ \nu @f$ and argument @f$ x >= 0 @f$.  |
| 664 | *  |
| 665 | * The Neumann function is defined by:  |
| 666 | * @f[  |
| 667 | * N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}  |
| 668 | * {\sin \nu\pi}  |
| 669 | * @f]  |
| 670 | * where @f$ x >= 0 @f$ and for integral order @f$ \nu = n @f$  |
| 671 | * a limit is taken: @f$ lim_{\nu \to n} @f$.  |
| 672 | *  |
| 673 | * @tparam _Tpnu The floating-point type of the order @c __nu.  |
| 674 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 675 | * @param __nu The order  |
| 676 | * @param __x The argument, <tt> __x >= 0 </tt>  |
| 677 | * @throw std::domain_error if <tt> __x < 0 </tt>.  |
| 678 | */  |
| 679 | template<typename _Tpnu, typename _Tp>  |
| 680 | inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type  |
| 681 | cyl_neumann(_Tpnu __nu, _Tp __x)  |
| 682 | {  |
| 683 | typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;  |
| 684 | return __detail::__cyl_neumann_n<__type>(__nu, __x);  |
| 685 | }  |
| 686 |   |
| 687 | // Incomplete elliptic integrals of the first kind  |
| 688 |   |
| 689 | /**  |
| 690 | * Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$  |
| 691 | * for @c float modulus @f$ k @f$ and angle @f$ \phi @f$.  |
| 692 | *  |
| 693 | * @see ellint_1 for details.  |
| 694 | */  |
| 695 | inline float  |
| 696 | ellint_1f(float __k, float __phi)  |
| 697 | { return __detail::__ellint_1<float>(__k, __phi); }  |
| 698 |   |
| 699 | /**  |
| 700 | * Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$  |
| 701 | * for <tt>long double</tt> modulus @f$ k @f$ and angle @f$ \phi @f$.  |
| 702 | *  |
| 703 | * @see ellint_1 for details.  |
| 704 | */  |
| 705 | inline long double  |
| 706 | ellint_1l(long double __k, long double __phi)  |
| 707 | { return __detail::__ellint_1<long double>(__k, __phi); }  |
| 708 |   |
| 709 | /**  |
| 710 | * Return the incomplete elliptic integral of the first kind @f$ F(k,\phi) @f$  |
| 711 | * for @c real modulus @f$ k @f$ and angle @f$ \phi @f$.  |
| 712 | *  |
| 713 | * The incomplete elliptic integral of the first kind is defined as  |
| 714 | * @f[  |
| 715 | * F(k,\phi) = \int_0^{\phi}\frac{d\theta}  |
| 716 | * {\sqrt{1 - k^2 sin^2\theta}}  |
| 717 | * @f]  |
| 718 | * For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of  |
| 719 | * the first kind, @f$ K(k) @f$. @see comp_ellint_1.  |
| 720 | *  |
| 721 | * @tparam _Tp The floating-point type of the modulus @c __k.  |
| 722 | * @tparam _Tpp The floating-point type of the angle @c __phi.  |
| 723 | * @param __k The modulus, <tt> abs(__k) <= 1 </tt>  |
| 724 | * @param __phi The integral limit argument in radians  |
| 725 | * @throw std::domain_error if <tt> abs(__k) > 1 </tt>.  |
| 726 | */  |
| 727 | template<typename _Tp, typename _Tpp>  |
| 728 | inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type  |
| 729 | ellint_1(_Tp __k, _Tpp __phi)  |
| 730 | {  |
| 731 | typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;  |
| 732 | return __detail::__ellint_1<__type>(__k, __phi);  |
| 733 | }  |
| 734 |   |
| 735 | // Incomplete elliptic integrals of the second kind  |
| 736 |   |
| 737 | /**  |
| 738 | * @brief Return the incomplete elliptic integral of the second kind  |
| 739 | * @f$ E(k,\phi) @f$ for @c float argument.  |
| 740 | *  |
| 741 | * @see ellint_2 for details.  |
| 742 | */  |
| 743 | inline float  |
| 744 | ellint_2f(float __k, float __phi)  |
| 745 | { return __detail::__ellint_2<float>(__k, __phi); }  |
| 746 |   |
| 747 | /**  |
| 748 | * @brief Return the incomplete elliptic integral of the second kind  |
| 749 | * @f$ E(k,\phi) @f$.  |
| 750 | *  |
| 751 | * @see ellint_2 for details.  |
| 752 | */  |
| 753 | inline long double  |
| 754 | ellint_2l(long double __k, long double __phi)  |
| 755 | { return __detail::__ellint_2<long double>(__k, __phi); }  |
| 756 |   |
| 757 | /**  |
| 758 | * Return the incomplete elliptic integral of the second kind  |
| 759 | * @f$ E(k,\phi) @f$.  |
| 760 | *  |
| 761 | * The incomplete elliptic integral of the second kind is defined as  |
| 762 | * @f[  |
| 763 | * E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}  |
| 764 | * @f]  |
| 765 | * For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of  |
| 766 | * the second kind, @f$ E(k) @f$. @see comp_ellint_2.  |
| 767 | *  |
| 768 | * @tparam _Tp The floating-point type of the modulus @c __k.  |
| 769 | * @tparam _Tpp The floating-point type of the angle @c __phi.  |
| 770 | * @param __k The modulus, <tt> abs(__k) <= 1 </tt>  |
| 771 | * @param __phi The integral limit argument in radians  |
| 772 | * @return The elliptic function of the second kind.  |
| 773 | * @throw std::domain_error if <tt> abs(__k) > 1 </tt>.  |
| 774 | */  |
| 775 | template<typename _Tp, typename _Tpp>  |
| 776 | inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type  |
| 777 | ellint_2(_Tp __k, _Tpp __phi)  |
| 778 | {  |
| 779 | typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;  |
| 780 | return __detail::__ellint_2<__type>(__k, __phi);  |
| 781 | }  |
| 782 |   |
| 783 | // Incomplete elliptic integrals of the third kind  |
| 784 |   |
| 785 | /**  |
| 786 | * @brief Return the incomplete elliptic integral of the third kind  |
| 787 | * @f$ \Pi(k,\nu,\phi) @f$ for @c float argument.  |
| 788 | *  |
| 789 | * @see ellint_3 for details.  |
| 790 | */  |
| 791 | inline float  |
| 792 | ellint_3f(float __k, float __nu, float __phi)  |
| 793 | { return __detail::__ellint_3<float>(__k, __nu, __phi); }  |
| 794 |   |
| 795 | /**  |
| 796 | * @brief Return the incomplete elliptic integral of the third kind  |
| 797 | * @f$ \Pi(k,\nu,\phi) @f$.  |
| 798 | *  |
| 799 | * @see ellint_3 for details.  |
| 800 | */  |
| 801 | inline long double  |
| 802 | ellint_3l(long double __k, long double __nu, long double __phi)  |
| 803 | { return __detail::__ellint_3<long double>(__k, __nu, __phi); }  |
| 804 |   |
| 805 | /**  |
| 806 | * @brief Return the incomplete elliptic integral of the third kind  |
| 807 | * @f$ \Pi(k,\nu,\phi) @f$.  |
| 808 | *  |
| 809 | * The incomplete elliptic integral of the third kind is defined by:  |
| 810 | * @f[  |
| 811 | * \Pi(k,\nu,\phi) = \int_0^{\phi}  |
| 812 | * \frac{d\theta}  |
| 813 | * {(1 - \nu \sin^2\theta)  |
| 814 | * \sqrt{1 - k^2 \sin^2\theta}}  |
| 815 | * @f]  |
| 816 | * For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of  |
| 817 | * the third kind, @f$ \Pi(k,\nu) @f$. @see comp_ellint_3.  |
| 818 | *  |
| 819 | * @tparam _Tp The floating-point type of the modulus @c __k.  |
| 820 | * @tparam _Tpn The floating-point type of the argument @c __nu.  |
| 821 | * @tparam _Tpp The floating-point type of the angle @c __phi.  |
| 822 | * @param __k The modulus, <tt> abs(__k) <= 1 </tt>  |
| 823 | * @param __nu The second argument  |
| 824 | * @param __phi The integral limit argument in radians  |
| 825 | * @return The elliptic function of the third kind.  |
| 826 | * @throw std::domain_error if <tt> abs(__k) > 1 </tt>.  |
| 827 | */  |
| 828 | template<typename _Tp, typename _Tpn, typename _Tpp>  |
| 829 | inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type  |
| 830 | ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)  |
| 831 | {  |
| 832 | typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;  |
| 833 | return __detail::__ellint_3<__type>(__k, __nu, __phi);  |
| 834 | }  |
| 835 |   |
| 836 | // Exponential integrals  |
| 837 |   |
| 838 | /**  |
| 839 | * Return the exponential integral @f$ Ei(x) @f$ for @c float argument @c x.  |
| 840 | *  |
| 841 | * @see expint for details.  |
| 842 | */  |
| 843 | inline float  |
| 844 | expintf(float __x)  |
| 845 | { return __detail::__expint<float>(__x); }  |
| 846 |   |
| 847 | /**  |
| 848 | * Return the exponential integral @f$ Ei(x) @f$  |
| 849 | * for <tt>long double</tt> argument @c x.  |
| 850 | *  |
| 851 | * @see expint for details.  |
| 852 | */  |
| 853 | inline long double  |
| 854 | expintl(long double __x)  |
| 855 | { return __detail::__expint<long double>(__x); }  |
| 856 |   |
| 857 | /**  |
| 858 | * Return the exponential integral @f$ Ei(x) @f$ for @c real argument @c x.  |
| 859 | *  |
| 860 | * The exponential integral is given by  |
| 861 | * \f[  |
| 862 | * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt  |
| 863 | * \f]  |
| 864 | *  |
| 865 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 866 | * @param __x The argument of the exponential integral function.  |
| 867 | */  |
| 868 | template<typename _Tp>  |
| 869 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 870 | expint(_Tp __x)  |
| 871 | {  |
| 872 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 873 | return __detail::__expint<__type>(__x);  |
| 874 | }  |
| 875 |   |
| 876 | // Hermite polynomials  |
| 877 |   |
| 878 | /**  |
| 879 | * Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n  |
| 880 | * and float argument @c x.  |
| 881 | *  |
| 882 | * @see hermite for details.  |
| 883 | */  |
| 884 | inline float  |
| 885 | hermitef(unsigned int __n, float __x)  |
| 886 | { return __detail::__poly_hermite<float>(__n, __x); }  |
| 887 |   |
| 888 | /**  |
| 889 | * Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n  |
| 890 | * and <tt>long double</tt> argument @c x.  |
| 891 | *  |
| 892 | * @see hermite for details.  |
| 893 | */  |
| 894 | inline long double  |
| 895 | hermitel(unsigned int __n, long double __x)  |
| 896 | { return __detail::__poly_hermite<long double>(__n, __x); }  |
| 897 |   |
| 898 | /**  |
| 899 | * Return the Hermite polynomial @f$ H_n(x) @f$ of order n  |
| 900 | * and @c real argument @c x.  |
| 901 | *  |
| 902 | * The Hermite polynomial is defined by:  |
| 903 | * @f[  |
| 904 | * H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}  |
| 905 | * @f]  |
| 906 | *  |
| 907 | * The Hermite polynomial obeys a reflection formula:  |
| 908 | * @f[  |
| 909 | * H_n(-x) = (-1)^n H_n(x)  |
| 910 | * @f]  |
| 911 | *  |
| 912 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 913 | * @param __n The order  |
| 914 | * @param __x The argument  |
| 915 | */  |
| 916 | template<typename _Tp>  |
| 917 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 918 | hermite(unsigned int __n, _Tp __x)  |
| 919 | {  |
| 920 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 921 | return __detail::__poly_hermite<__type>(__n, __x);  |
| 922 | }  |
| 923 |   |
| 924 | // Laguerre polynomials  |
| 925 |   |
| 926 | /**  |
| 927 | * Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n  |
| 928 | * and @c float argument @f$ x >= 0 @f$.  |
| 929 | *  |
| 930 | * @see laguerre for more details.  |
| 931 | */  |
| 932 | inline float  |
| 933 | laguerref(unsigned int __n, float __x)  |
| 934 | { return __detail::__laguerre<float>(__n, __x); }  |
| 935 |   |
| 936 | /**  |
| 937 | * Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n  |
| 938 | * and <tt>long double</tt> argument @f$ x >= 0 @f$.  |
| 939 | *  |
| 940 | * @see laguerre for more details.  |
| 941 | */  |
| 942 | inline long double  |
| 943 | laguerrel(unsigned int __n, long double __x)  |
| 944 | { return __detail::__laguerre<long double>(__n, __x); }  |
| 945 |   |
| 946 | /**  |
| 947 | * Returns the Laguerre polynomial @f$ L_n(x) @f$  |
| 948 | * of nonnegative degree @c n and real argument @f$ x >= 0 @f$.  |
| 949 | *  |
| 950 | * The Laguerre polynomial is defined by:  |
| 951 | * @f[  |
| 952 | * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})  |
| 953 | * @f]  |
| 954 | *  |
| 955 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 956 | * @param __n The nonnegative order  |
| 957 | * @param __x The argument <tt> __x >= 0 </tt>  |
| 958 | * @throw std::domain_error if <tt> __x < 0 </tt>.  |
| 959 | */  |
| 960 | template<typename _Tp>  |
| 961 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 962 | laguerre(unsigned int __n, _Tp __x)  |
| 963 | {  |
| 964 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 965 | return __detail::__laguerre<__type>(__n, __x);  |
| 966 | }  |
| 967 |   |
| 968 | // Legendre polynomials  |
| 969 |   |
| 970 | /**  |
| 971 | * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative  |
| 972 | * degree @f$ l @f$ and @c float argument @f$ |x| <= 0 @f$.  |
| 973 | *  |
| 974 | * @see legendre for more details.  |
| 975 | */  |
| 976 | inline float  |
| 977 | legendref(unsigned int __l, float __x)  |
| 978 | { return __detail::__poly_legendre_p<float>(__l, __x); }  |
| 979 |   |
| 980 | /**  |
| 981 | * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative  |
| 982 | * degree @f$ l @f$ and <tt>long double</tt> argument @f$ |x| <= 0 @f$.  |
| 983 | *  |
| 984 | * @see legendre for more details.  |
| 985 | */  |
| 986 | inline long double  |
| 987 | legendrel(unsigned int __l, long double __x)  |
| 988 | { return __detail::__poly_legendre_p<long double>(__l, __x); }  |
| 989 |   |
| 990 | /**  |
| 991 | * Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative  |
| 992 | * degree @f$ l @f$ and real argument @f$ |x| <= 0 @f$.  |
| 993 | *  |
| 994 | * The Legendre function of order @f$ l @f$ and argument @f$ x @f$,  |
| 995 | * @f$ P_l(x) @f$, is defined by:  |
| 996 | * @f[  |
| 997 | * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}  |
| 998 | * @f]  |
| 999 | *  |
| 1000 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 1001 | * @param __l The degree @f$ l >= 0 @f$  |
| 1002 | * @param __x The argument @c abs(__x) <= 1  |
| 1003 | * @throw std::domain_error if @c abs(__x) > 1  |
| 1004 | */  |
| 1005 | template<typename _Tp>  |
| 1006 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 1007 | legendre(unsigned int __l, _Tp __x)  |
| 1008 | {  |
| 1009 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 1010 | return __detail::__poly_legendre_p<__type>(__l, __x);  |
| 1011 | }  |
| 1012 |   |
| 1013 | // Riemann zeta functions  |
| 1014 |   |
| 1015 | /**  |
| 1016 | * Return the Riemann zeta function @f$ \zeta(s) @f$  |
| 1017 | * for @c float argument @f$ s @f$.  |
| 1018 | *  |
| 1019 | * @see riemann_zeta for more details.  |
| 1020 | */  |
| 1021 | inline float  |
| 1022 | riemann_zetaf(float __s)  |
| 1023 | { return __detail::__riemann_zeta<float>(__s); }  |
| 1024 |   |
| 1025 | /**  |
| 1026 | * Return the Riemann zeta function @f$ \zeta(s) @f$  |
| 1027 | * for <tt>long double</tt> argument @f$ s @f$.  |
| 1028 | *  |
| 1029 | * @see riemann_zeta for more details.  |
| 1030 | */  |
| 1031 | inline long double  |
| 1032 | riemann_zetal(long double __s)  |
| 1033 | { return __detail::__riemann_zeta<long double>(__s); }  |
| 1034 |   |
| 1035 | /**  |
| 1036 | * Return the Riemann zeta function @f$ \zeta(s) @f$  |
| 1037 | * for real argument @f$ s @f$.  |
| 1038 | *  |
| 1039 | * The Riemann zeta function is defined by:  |
| 1040 | * @f[  |
| 1041 | * \zeta(s) = \sum_{k=1}^{\infty} k^{-s} \hbox{ for } s > 1  |
| 1042 | * @f]  |
| 1043 | * and  |
| 1044 | * @f[  |
| 1045 | * \zeta(s) = \frac{1}{1-2^{1-s}}\sum_{k=1}^{\infty}(-1)^{k-1}k^{-s}  |
| 1046 | * \hbox{ for } 0 <= s <= 1  |
| 1047 | * @f]  |
| 1048 | * For s < 1 use the reflection formula:  |
| 1049 | * @f[  |
| 1050 | * \zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s)  |
| 1051 | * @f]  |
| 1052 | *  |
| 1053 | * @tparam _Tp The floating-point type of the argument @c __s.  |
| 1054 | * @param __s The argument <tt> s != 1 </tt>  |
| 1055 | */  |
| 1056 | template<typename _Tp>  |
| 1057 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 1058 | riemann_zeta(_Tp __s)  |
| 1059 | {  |
| 1060 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 1061 | return __detail::__riemann_zeta<__type>(__s);  |
| 1062 | }  |
| 1063 |   |
| 1064 | // Spherical Bessel functions  |
| 1065 |   |
| 1066 | /**  |
| 1067 | * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n  |
| 1068 | * and @c float argument @f$ x >= 0 @f$.  |
| 1069 | *  |
| 1070 | * @see sph_bessel for more details.  |
| 1071 | */  |
| 1072 | inline float  |
| 1073 | sph_besself(unsigned int __n, float __x)  |
| 1074 | { return __detail::__sph_bessel<float>(__n, __x); }  |
| 1075 |   |
| 1076 | /**  |
| 1077 | * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n  |
| 1078 | * and <tt>long double</tt> argument @f$ x >= 0 @f$.  |
| 1079 | *  |
| 1080 | * @see sph_bessel for more details.  |
| 1081 | */  |
| 1082 | inline long double  |
| 1083 | sph_bessell(unsigned int __n, long double __x)  |
| 1084 | { return __detail::__sph_bessel<long double>(__n, __x); }  |
| 1085 |   |
| 1086 | /**  |
| 1087 | * Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n  |
| 1088 | * and real argument @f$ x >= 0 @f$.  |
| 1089 | *  |
| 1090 | * The spherical Bessel function is defined by:  |
| 1091 | * @f[  |
| 1092 | * j_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)  |
| 1093 | * @f]  |
| 1094 | *  |
| 1095 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 1096 | * @param __n The integral order <tt> n >= 0 </tt>  |
| 1097 | * @param __x The real argument <tt> x >= 0 </tt>  |
| 1098 | * @throw std::domain_error if <tt> __x < 0 </tt>.  |
| 1099 | */  |
| 1100 | template<typename _Tp>  |
| 1101 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 1102 | sph_bessel(unsigned int __n, _Tp __x)  |
| 1103 | {  |
| 1104 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 1105 | return __detail::__sph_bessel<__type>(__n, __x);  |
| 1106 | }  |
| 1107 |   |
| 1108 | // Spherical associated Legendre functions  |
| 1109 |   |
| 1110 | /**  |
| 1111 | * Return the spherical Legendre function of nonnegative integral  |
| 1112 | * degree @c l and order @c m and float angle @f$ \theta @f$ in radians.  |
| 1113 | *  |
| 1114 | * @see sph_legendre for details.  |
| 1115 | */  |
| 1116 | inline float  |
| 1117 | sph_legendref(unsigned int __l, unsigned int __m, float __theta)  |
| 1118 | { return __detail::__sph_legendre<float>(__l, __m, __theta); }  |
| 1119 |   |
| 1120 | /**  |
| 1121 | * Return the spherical Legendre function of nonnegative integral  |
| 1122 | * degree @c l and order @c m and <tt>long double</tt> angle @f$ \theta @f$  |
| 1123 | * in radians.  |
| 1124 | *  |
| 1125 | * @see sph_legendre for details.  |
| 1126 | */  |
| 1127 | inline long double  |
| 1128 | sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)  |
| 1129 | { return __detail::__sph_legendre<long double>(__l, __m, __theta); }  |
| 1130 |   |
| 1131 | /**  |
| 1132 | * Return the spherical Legendre function of nonnegative integral  |
| 1133 | * degree @c l and order @c m and real angle @f$ \theta @f$ in radians.  |
| 1134 | *  |
| 1135 | * The spherical Legendre function is defined by  |
| 1136 | * @f[  |
| 1137 | * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}  |
| 1138 | * \frac{(l-m)!}{(l+m)!}]  |
| 1139 | * P_l^m(\cos\theta) \exp^{im\phi}  |
| 1140 | * @f]  |
| 1141 | *  |
| 1142 | * @tparam _Tp The floating-point type of the angle @c __theta.  |
| 1143 | * @param __l The order <tt> __l >= 0 </tt>  |
| 1144 | * @param __m The degree <tt> __m >= 0 </tt> and <tt> __m <= __l </tt>  |
| 1145 | * @param __theta The radian polar angle argument  |
| 1146 | */  |
| 1147 | template<typename _Tp>  |
| 1148 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 1149 | sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)  |
| 1150 | {  |
| 1151 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 1152 | return __detail::__sph_legendre<__type>(__l, __m, __theta);  |
| 1153 | }  |
| 1154 |   |
| 1155 | // Spherical Neumann functions  |
| 1156 |   |
| 1157 | /**  |
| 1158 | * Return the spherical Neumann function of integral order @f$ n >= 0 @f$  |
| 1159 | * and @c float argument @f$ x >= 0 @f$.  |
| 1160 | *  |
| 1161 | * @see sph_neumann for details.  |
| 1162 | */  |
| 1163 | inline float  |
| 1164 | sph_neumannf(unsigned int __n, float __x)  |
| 1165 | { return __detail::__sph_neumann<float>(__n, __x); }  |
| 1166 |   |
| 1167 | /**  |
| 1168 | * Return the spherical Neumann function of integral order @f$ n >= 0 @f$  |
| 1169 | * and <tt>long double</tt> @f$ x >= 0 @f$.  |
| 1170 | *  |
| 1171 | * @see sph_neumann for details.  |
| 1172 | */  |
| 1173 | inline long double  |
| 1174 | sph_neumannl(unsigned int __n, long double __x)  |
| 1175 | { return __detail::__sph_neumann<long double>(__n, __x); }  |
| 1176 |   |
| 1177 | /**  |
| 1178 | * Return the spherical Neumann function of integral order @f$ n >= 0 @f$  |
| 1179 | * and real argument @f$ x >= 0 @f$.  |
| 1180 | *  |
| 1181 | * The spherical Neumann function is defined by  |
| 1182 | * @f[  |
| 1183 | * n_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)  |
| 1184 | * @f]  |
| 1185 | *  |
| 1186 | * @tparam _Tp The floating-point type of the argument @c __x.  |
| 1187 | * @param __n The integral order <tt> n >= 0 </tt>  |
| 1188 | * @param __x The real argument <tt> __x >= 0 </tt>  |
| 1189 | * @throw std::domain_error if <tt> __x < 0 </tt>.  |
| 1190 | */  |
| 1191 | template<typename _Tp>  |
| 1192 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 1193 | sph_neumann(unsigned int __n, _Tp __x)  |
| 1194 | {  |
| 1195 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 1196 | return __detail::__sph_neumann<__type>(__n, __x);  |
| 1197 | }  |
| 1198 |   |
| 1199 | // @} group mathsf  |
| 1200 |   |
| 1201 | _GLIBCXX_END_NAMESPACE_VERSION  |
| 1202 | } // namespace std  |
| 1203 |   |
| 1204 | #ifndef __STRICT_ANSI__  |
| 1205 | namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)  |
| 1206 | {  |
| 1207 | _GLIBCXX_BEGIN_NAMESPACE_VERSION  |
| 1208 |   |
| 1209 | // Airy functions  |
| 1210 |   |
| 1211 | /**  |
| 1212 | * Return the Airy function @f$ Ai(x) @f$ of @c float argument x.  |
| 1213 | */  |
| 1214 | inline float  |
| 1215 | airy_aif(float __x)  |
| 1216 | {  |
| 1217 | float __Ai, __Bi, __Aip, __Bip;  |
| 1218 | std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip);  |
| 1219 | return __Ai;  |
| 1220 | }  |
| 1221 |   |
| 1222 | /**  |
| 1223 | * Return the Airy function @f$ Ai(x) @f$ of <tt>long double</tt> argument x.  |
| 1224 | */  |
| 1225 | inline long double  |
| 1226 | airy_ail(long double __x)  |
| 1227 | {  |
| 1228 | long double __Ai, __Bi, __Aip, __Bip;  |
| 1229 | std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip);  |
| 1230 | return __Ai;  |
| 1231 | }  |
| 1232 |   |
| 1233 | /**  |
| 1234 | * Return the Airy function @f$ Ai(x) @f$ of real argument x.  |
| 1235 | */  |
| 1236 | template<typename _Tp>  |
| 1237 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 1238 | airy_ai(_Tp __x)  |
| 1239 | {  |
| 1240 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 1241 | __type __Ai, __Bi, __Aip, __Bip;  |
| 1242 | std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip);  |
| 1243 | return __Ai;  |
| 1244 | }  |
| 1245 |   |
| 1246 | /**  |
| 1247 | * Return the Airy function @f$ Bi(x) @f$ of @c float argument x.  |
| 1248 | */  |
| 1249 | inline float  |
| 1250 | airy_bif(float __x)  |
| 1251 | {  |
| 1252 | float __Ai, __Bi, __Aip, __Bip;  |
| 1253 | std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip);  |
| 1254 | return __Bi;  |
| 1255 | }  |
| 1256 |   |
| 1257 | /**  |
| 1258 | * Return the Airy function @f$ Bi(x) @f$ of <tt>long double</tt> argument x.  |
| 1259 | */  |
| 1260 | inline long double  |
| 1261 | airy_bil(long double __x)  |
| 1262 | {  |
| 1263 | long double __Ai, __Bi, __Aip, __Bip;  |
| 1264 | std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip);  |
| 1265 | return __Bi;  |
| 1266 | }  |
| 1267 |   |
| 1268 | /**  |
| 1269 | * Return the Airy function @f$ Bi(x) @f$ of real argument x.  |
| 1270 | */  |
| 1271 | template<typename _Tp>  |
| 1272 | inline typename __gnu_cxx::__promote<_Tp>::__type  |
| 1273 | airy_bi(_Tp __x)  |
| 1274 | {  |
| 1275 | typedef typename __gnu_cxx::__promote<_Tp>::__type __type;  |
| 1276 | __type __Ai, __Bi, __Aip, __Bip;  |
| 1277 | std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip);  |
| 1278 | return __Bi;  |
| 1279 | }  |
| 1280 |   |
| 1281 | // Confluent hypergeometric functions  |
| 1282 |   |
| 1283 | /**  |
| 1284 | * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$  |
| 1285 | * of @c float numeratorial parameter @c a, denominatorial parameter @c c,  |
| 1286 | * and argument @c x.  |
| 1287 | *  |
| 1288 | * @see conf_hyperg for details.  |
| 1289 | */  |
| 1290 | inline float  |
| 1291 | conf_hypergf(float __a, float __c, float __x)  |
| 1292 | { return std::__detail::__conf_hyperg<float>(__a, __c, __x); }  |
| 1293 |   |
| 1294 | /**  |
| 1295 | * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$  |
| 1296 | * of <tt>long double</tt> numeratorial parameter @c a,  |
| 1297 | * denominatorial parameter @c c, and argument @c x.  |
| 1298 | *  |
| 1299 | * @see conf_hyperg for details.  |
| 1300 | */  |
| 1301 | inline long double  |
| 1302 | conf_hypergl(long double __a, long double __c, long double __x)  |
| 1303 | { return std::__detail::__conf_hyperg<long double>(__a, __c, __x); }  |
| 1304 |   |
| 1305 | /**  |
| 1306 | * Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$  |
| 1307 | * of real numeratorial parameter @c a, denominatorial parameter @c c,  |
| 1308 | * and argument @c x.  |
| 1309 | *  |
| 1310 | * The confluent hypergeometric function is defined by  |
| 1311 | * @f[  |
| 1312 | * {}_1F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n x^n}{(c)_n n!}  |
| 1313 | * @f]  |
| 1314 | * where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$,  |
| 1315 | * @f$ (x)_0 = 1 @f$  |
| 1316 | *  |
| 1317 | * @param __a The numeratorial parameter  |
| 1318 | * @param __c The denominatorial parameter  |
| 1319 | * @param __x The argument  |
| 1320 | */  |
| 1321 | template<typename _Tpa, typename _Tpc, typename _Tp>  |
| 1322 | inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type  |
| 1323 | conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)  |
| 1324 | {  |
| 1325 | typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;  |
| 1326 | return std::__detail::__conf_hyperg<__type>(__a, __c, __x);  |
| 1327 | }  |
| 1328 |   |
| 1329 | // Hypergeometric functions  |
| 1330 |   |
| 1331 | /**  |
| 1332 | * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$  |
| 1333 | * of @ float numeratorial parameters @c a and @c b,  |
| 1334 | * denominatorial parameter @c c, and argument @c x.  |
| 1335 | *  |
| 1336 | * @see hyperg for details.  |
| 1337 | */  |
| 1338 | inline float  |
| 1339 | hypergf(float __a, float __b, float __c, float __x)  |
| 1340 | { return std::__detail::__hyperg<float>(__a, __b, __c, __x); }  |
| 1341 |   |
| 1342 | /**  |
| 1343 | * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$  |
| 1344 | * of <tt>long double</tt> numeratorial parameters @c a and @c b,  |
| 1345 | * denominatorial parameter @c c, and argument @c x.  |
| 1346 | *  |
| 1347 | * @see hyperg for details.  |
| 1348 | */  |
| 1349 | inline long double  |
| 1350 | hypergl(long double __a, long double __b, long double __c, long double __x)  |
| 1351 | { return std::__detail::__hyperg<long double>(__a, __b, __c, __x); }  |
| 1352 |   |
| 1353 | /**  |
| 1354 | * Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$  |
| 1355 | * of real numeratorial parameters @c a and @c b,  |
| 1356 | * denominatorial parameter @c c, and argument @c x.  |
| 1357 | *  |
| 1358 | * The hypergeometric function is defined by  |
| 1359 | * @f[  |
| 1360 | * {}_2F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n x^n}{(c)_n n!}  |
| 1361 | * @f]  |
| 1362 | * where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$,  |
| 1363 | * @f$ (x)_0 = 1 @f$  |
| 1364 | *  |
| 1365 | * @param __a The first numeratorial parameter  |
| 1366 | * @param __b The second numeratorial parameter  |
| 1367 | * @param __c The denominatorial parameter  |
| 1368 | * @param __x The argument  |
| 1369 | */  |
| 1370 | template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>  |
| 1371 | inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type  |
| 1372 | hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)  |
| 1373 | {  |
| 1374 | typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>  |
| 1375 | ::__type __type;  |
| 1376 | return std::__detail::__hyperg<__type>(__a, __b, __c, __x);  |
| 1377 | }  |
| 1378 |   |
| 1379 | _GLIBCXX_END_NAMESPACE_VERSION  |
| 1380 | } // namespace __gnu_cxx  |
| 1381 | #endif // __STRICT_ANSI__  |
| 1382 |   |
| 1383 | #pragma GCC visibility pop  |
| 1384 |   |
| 1385 | #endif // _GLIBCXX_BITS_SPECFUN_H  |
| 1386 | |